Laplacian Segmentation Networks Improve Epistemic Uncertainty Quantification
- URL: http://arxiv.org/abs/2303.13123v2
- Date: Tue, 23 Jul 2024 14:38:34 GMT
- Title: Laplacian Segmentation Networks Improve Epistemic Uncertainty Quantification
- Authors: Kilian Zepf, Selma Wanna, Marco Miani, Juston Moore, Jes Frellsen, Søren Hauberg, Frederik Warburg, Aasa Feragen,
- Abstract summary: Image segmentation relies heavily on neural networks which are known to be overconfident.
This is a common scenario in the medical domain due to variations in equipment, acquisition sites, or image corruptions.
We propose Laplacian Networks (LSN): methods which jointly model (model) and aleatoric (data) uncertainty for OOD detection.
- Score: 21.154979285736268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image segmentation relies heavily on neural networks which are known to be overconfident, especially when making predictions on out-of-distribution (OOD) images. This is a common scenario in the medical domain due to variations in equipment, acquisition sites, or image corruptions. This work addresses the challenge of OOD detection by proposing Laplacian Segmentation Networks (LSN): methods which jointly model epistemic (model) and aleatoric (data) uncertainty for OOD detection. In doing so, we propose the first Laplace approximation of the weight posterior that scales to large neural networks with skip connections that have high-dimensional outputs. We demonstrate on three datasets that the LSN-modeled parameter distributions, in combination with suitable uncertainty measures, gives superior OOD detection.
Related papers
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Transformer-based out-of-distribution detection for clinically safe
segmentation [1.649654992058168]
In a clinical setting it is essential that deployed image processing systems do not make confidently wrong predictions.
In this work, we focus on image segmentation and evaluate several approaches to network uncertainty.
We propose performing full 3D OOD detection using a VQ-GAN to provide a compressed latent representation of the image and a transformer to estimate the data likelihood.
arXiv Detail & Related papers (2022-05-21T17:55:09Z) - Out of Distribution Data Detection Using Dropout Bayesian Neural
Networks [29.84998820573774]
We first show how previous attempts to leverage the randomized embeddings induced by the intermediate layers of a dropout BNN can fail due to the distance metric used.
We introduce an alternative approach to measuring embedding uncertainty, justify its use theoretically, and demonstrate how incorporating embedding uncertainty improves OOD data identification across three tasks: image classification, language classification, and malware detection.
arXiv Detail & Related papers (2022-02-18T02:23:43Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
This paper introduces a new Bayesian deep learning framework for uncertainty quantification in segmentation neural networks.
We evaluate the proposed framework on medical image segmentation data from Magnetic Resonances Imaging and Computed Tomography scans.
Our experiments on multiple benchmark datasets demonstrate that the proposed framework is more robust to noise and adversarial attacks as compared to state-of-the-art segmentation models.
arXiv Detail & Related papers (2021-11-10T22:46:05Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Probing Predictions on OOD Images via Nearest Categories [97.055916832257]
We study out-of-distribution (OOD) prediction behavior of neural networks when they classify images from unseen classes or corrupted images.
We introduce a new measure, nearest category generalization (NCG), where we compute the fraction of OOD inputs that are classified with the same label as their nearest neighbor in the training set.
We find that robust networks have consistently higher NCG accuracy than natural training, even when the OOD data is much farther away than the robustness radius.
arXiv Detail & Related papers (2020-11-17T07:42:27Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
We propose a probabilistic model that uses a network-based prior as the normative distribution and detect lesions pixel-wise using MAP estimation.
Experiments with gliomas and stroke lesions in brain MRI show that the proposed approach outperforms the state-of-the-art unsupervised methods by a substantial margin.
arXiv Detail & Related papers (2020-04-30T18:03:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.