論文の概要: Enriching Neural Network Training Dataset to Improve Worst-Case
Performance Guarantees
- arxiv url: http://arxiv.org/abs/2303.13228v1
- Date: Thu, 23 Mar 2023 12:59:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 14:28:11.550581
- Title: Enriching Neural Network Training Dataset to Improve Worst-Case
Performance Guarantees
- Title(参考訳): 最悪の場合のパフォーマンス保証を改善するためのニューラルネットワークトレーニングデータセットの強化
- Authors: Rahul Nellikkath, Spyros Chatzivasileiadis
- Abstract要約: トレーニング中にNNトレーニングデータセットを適用することで、NNのパフォーマンスが向上し、最悪の場合の違反を大幅に低減できることを示す。
本稿では、最悪のケース違反を低減し、最悪のケース性能保証を改善したニューラルネットワークを提供するために、トレーニングデータセットを重要なデータポイントで識別し、強化するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning algorithms, especially Neural Networks (NNs), are a valuable
tool used to approximate non-linear relationships, like the AC-Optimal Power
Flow (AC-OPF), with considerable accuracy -- and achieving a speedup of several
orders of magnitude when deployed for use. Often in power systems literature,
the NNs are trained with a fixed dataset generated prior to the training
process. In this paper, we show that adapting the NN training dataset during
training can improve the NN performance and substantially reduce its worst-case
violations. This paper proposes an algorithm that identifies and enriches the
training dataset with critical datapoints that reduce the worst-case violations
and deliver a neural network with improved worst-case performance guarantees.
We demonstrate the performance of our algorithm in four test power systems,
ranging from 39-buses to 162-buses.
- Abstract(参考訳): 機械学習アルゴリズム、特にニューラルネットワーク(NN)は、AC-Optimal Power Flow(AC-OPF)のような非線形関係をかなり正確に近似し、使用用にデプロイされた時に数桁のスピードアップを達成するための貴重なツールである。
電力システムの文献では、NNはトレーニングプロセスの前に生成される固定データセットで訓練されることが多い。
本稿では,トレーニング中のNNトレーニングデータセットの適応により,NN性能が向上し,最悪の場合の違反を大幅に低減できることを示す。
本稿では,重要なデータポイントを持つトレーニングデータセットを識別・強化し,最悪の場合の違反を低減し,最悪の場合のパフォーマンス保証を改善したニューラルネットワークを提供するアルゴリズムを提案する。
39バスから162バスまでの4つのテストパワーシステムにおいて,本アルゴリズムの性能を示す。
関連論文リスト
- Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Efficient Uncertainty Quantification and Reduction for
Over-Parameterized Neural Networks [23.7125322065694]
不確実性定量化(UQ)は、機械学習モデルの信頼性評価と強化に重要である。
統計学的に保証されたスキームを作成し、主に、過剰パラメータ化ニューラルネットワークの不確実性である、エンフェラクタライズし、エンフェレモーブする。
特に,PNC予測器(Procedural-noise-correcting, Procedural-noise-correcting, PNC)に基づくアプローチでは,適切なラベル付きデータセットでトレーニングされたEmphone補助ネットワークのみを用いることで,手続き的不確実性を取り除く。
論文 参考訳(メタデータ) (2023-06-09T05:15:53Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNは、実数値重みとスケールファクターの内在的双線型関係を無視している。
私たちの仕事は、双線形の観点からBNNを最適化する最初の試みです。
我々は、様々なモデルやデータセット上で最先端のBNNに対して印象的な性能を示す頑健なRBONNを得る。
論文 参考訳(メタデータ) (2022-09-04T06:45:33Z) - Physics-Informed Neural Networks for AC Optimal Power Flow [0.0]
本稿では,AC-OPFの結果を正確に推定する物理インフォームドニューラルネットワークを初めて紹介する。
物理インフォームドニューラルネットワークは,従来のニューラルネットワークよりも精度が高く,制約違反も少ないことを示す。
論文 参考訳(メタデータ) (2021-10-06T11:44:59Z) - Physics-Informed Neural Networks for Minimising Worst-Case Violations in
DC Optimal Power Flow [0.0]
物理インフォームドニューラルネットワークは、基礎となる物理システムの既存のモデルを利用して、少ないデータで高精度な結果を生成する。
このようなアプローチは、計算時間を劇的に削減し、電力システムにおける計算集約的なプロセスの優れた見積を生成するのに役立つ。
このようなニューラルネットワークは、電力系統における安全クリティカルな応用に適用でき、電力系統運用者の間で高い信頼関係を構築することができる。
論文 参考訳(メタデータ) (2021-06-28T10:45:22Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI)アルゴリズムは、浅いフルコネクテッドニューラルネットワークのバックプロパゲーションに対する実行可能でスケーラブルな代替手段であることが示された。
従来のディープニューラルネットワークアーキテクチャをトレーニングするために、TAGIがバックプロパゲーションのパフォーマンスとどのように一致するか、または上回るかを実証しています。
論文 参考訳(メタデータ) (2021-03-09T14:51:34Z) - Dynamic Hard Pruning of Neural Networks at the Edge of the Internet [11.605253906375424]
動的ハードプルーニング(DynHP)技術は、トレーニング中にネットワークを段階的にプルーニングする。
DynHPは、最終ニューラルネットワークの調整可能なサイズ削減と、トレーニング中のNNメモリ占有率の削減を可能にする。
凍結メモリは、ハードプルーニング戦略による精度劣化を相殺するために、エンファンダイナミックバッチサイズアプローチによって再利用される。
論文 参考訳(メタデータ) (2020-11-17T10:23:28Z) - Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive
Meta-Pruning [83.59005356327103]
既存のプルーニング技術に共通する制限は、プルーニングの前に少なくとも1回はネットワークの事前トレーニングが必要であることである。
本稿では,ターゲットデータセットの関数としてプルーニングマスクを生成することにより,大規模な参照データセット上で事前訓練されたネットワークをタスク適応的にプルークするSTAMPを提案する。
ベンチマークデータセット上での最近の先進的なプルーニング手法に対するSTAMPの有効性を検証する。
論文 参考訳(メタデータ) (2020-06-22T10:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。