論文の概要: Optimization Proxies using Limited Labeled Data and Training Time -- A Semi-Supervised Bayesian Neural Network Approach
- arxiv url: http://arxiv.org/abs/2410.03085v2
- Date: Thu, 27 Feb 2025 08:19:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 15:15:46.121002
- Title: Optimization Proxies using Limited Labeled Data and Training Time -- A Semi-Supervised Bayesian Neural Network Approach
- Title(参考訳): 限定ラベル付きデータとトレーニング時間を用いた最適化プロキシ -半スーパービジョンベイズニューラルネットワークアプローチ
- Authors: Parikshit Pareek, Abhijith Jayakumar, Kaarthik Sundar, Deepjyoti Deka, Sidhant Misra,
- Abstract要約: 制約のある最適化問題は、在庫や電力網などの様々な工学システムで発生する。
標準ディープニューラルネットワーク(DNN)ベースの機械学習プロキシは、ラベル付きデータが不足し、トレーニング時間が制限された実用的な環境では有効ではない。
- 参考スコア(独自算出の注目度): 3.26805553822503
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Constrained optimization problems arise in various engineering systems such as inventory management and power grids. Standard deep neural network (DNN) based machine learning proxies are ineffective in practical settings where labeled data is scarce and training times are limited. We propose a semi-supervised Bayesian Neural Networks (BNNs) based optimization proxy for this complex regime, wherein training commences in a sandwiched fashion, alternating between a supervised learning step for minimizing cost, and an unsupervised learning step for enforcing constraint feasibility. We show that the proposed semi-supervised BNN outperforms DNN architectures on important non-convex constrained optimization problems from energy network operations, achieving up to a tenfold reduction in expected maximum equality gap and halving the inequality gaps. Further, the BNN's ability to provide posterior samples is leveraged to construct practically meaningful probabilistic confidence bounds on performance using a limited validation data, unlike prior methods.
- Abstract(参考訳): 制約付き最適化問題は、在庫管理や電力網など、さまざまなエンジニアリングシステムで発生する。
標準ディープニューラルネットワーク(DNN)ベースの機械学習プロキシは、ラベル付きデータが不足し、トレーニング時間が制限された実用的な環境では有効ではない。
本稿では,この複雑なシステムに対する半教師付きベイズニューラルネットワーク(BNN)に基づく最適化プロキシを提案し,サンドイッチ方式でトレーニングを開始することにより,コストを最小化するための教師付き学習ステップと,制約実現性を強制するための教師なし学習ステップを交互に行う。
提案した半教師付きBNNは、エネルギーネットワーク操作から重要な非凸制約最適化問題に対してDNNアーキテクチャよりも優れており、期待される最大等式ギャップの最大10倍の削減を実現し、不等式ギャップを半減することを示す。
さらに、BNNの後方サンプル提供能力を利用して、従来の方法とは異なり、限定されたバリデーションデータを用いて、性能に有意義な確率的信頼境界を構築する。
関連論文リスト
- QP-SNN: Quantized and Pruned Spiking Neural Networks [10.74122828236122]
スパイキングニューラルネットワーク(SNN)はスパイクを利用して情報をエンコードし、イベント駆動方式で運用する。
資源限定シナリオにおいて,高性能なSNNを効果的に展開することを目的とした,ハードウェアフレンドリで軽量なSNNを提案する。
論文 参考訳(メタデータ) (2025-02-09T13:50:59Z) - Reliable Projection Based Unsupervised Learning for Semi-Definite QCQP with Application of Beamforming Optimization [11.385703484113552]
本稿では,半定値制約を持つ特殊2次クラス(QCQP)について検討する。
本稿では,高い性能の制約解を得るための有望な手法としてニューラルネットワーク(NN)を提案する。
教師なし学習が使用されるため、NNはラベルなしで効果的に利用することができる。
論文 参考訳(メタデータ) (2024-07-04T06:26:01Z) - Bayesian Entropy Neural Networks for Physics-Aware Prediction [14.705526856205454]
本稿では,ベイズニューラルネットワーク(BNN)の予測に制約を加えるためのフレームワークであるBENNを紹介する。
ベンは予測値だけでなく、その微分や分散を制約し、より堅牢で信頼性の高いモデル出力を保証できる。
その結果、従来のBNNよりも大幅に改善され、現代の制約されたディープラーニング手法と比較して競争性能が向上した。
論文 参考訳(メタデータ) (2024-07-01T07:00:44Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach [36.32772317151467]
ディープラーニングは、タスクオフロードとリソース割り当てを最適化するために、モバイルエッジコンピューティング(MEC)でうまく採用されている。
エッジネットワークのダイナミクスは、低スケーラビリティと高トレーニングコストという、ニューラルネットワーク(NN)ベースの最適化方法における2つの課題を提起する。
本稿では,新たなリンクアウトプットGNN(LOGNN)ベースの資源管理手法を提案し,MECにおける資源割り当てを柔軟に最適化する。
論文 参考訳(メタデータ) (2023-06-15T08:21:41Z) - Enriching Neural Network Training Dataset to Improve Worst-Case
Performance Guarantees [0.0]
トレーニング中にNNトレーニングデータセットを適用することで、NNのパフォーマンスが向上し、最悪の場合の違反を大幅に低減できることを示す。
本稿では、最悪のケース違反を低減し、最悪のケース性能保証を改善したニューラルネットワークを提供するために、トレーニングデータセットを重要なデータポイントで識別し、強化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-23T12:59:37Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
グラフニューラルネットワークを用いて、要求された電力と対応するアロケーションとの間の非線形パラメトリゼーションを学習する。
シミュレーションを通して、この教師なし学習コンテキストにおけるGNNの使用は、標準解法に匹敵するソリューションにつながることを示す。
論文 参考訳(メタデータ) (2022-10-17T17:30:09Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNは、実数値重みとスケールファクターの内在的双線型関係を無視している。
私たちの仕事は、双線形の観点からBNNを最適化する最初の試みです。
我々は、様々なモデルやデータセット上で最先端のBNNに対して印象的な性能を示す頑健なRBONNを得る。
論文 参考訳(メタデータ) (2022-09-04T06:45:33Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Unsupervised Deep Learning for Optimizing Wireless Systems with
Instantaneous and Statistic Constraints [29.823814915538463]
我々は、教師なしのディープラーニングを用いて、瞬時的制約と統計的制約の両方で、双方の問題を解決する統一的な枠組みを確立する。
教師なし学習は、最適政策の違反確率と近似精度の観点から教師あり学習より優れていることを示す。
論文 参考訳(メタデータ) (2020-05-30T13:37:14Z) - Nonconvex sparse regularization for deep neural networks and its
optimality [1.9798034349981162]
ディープニューラルネットワーク(DNN)推定器は、回帰と分類問題に対して最適な収束率を得ることができる。
スパースDNNに対する新たなペナル化推定法を提案する。
スパースペンタライズされた推定器は、様々な非パラメトリック回帰問題に対する最小収束率を適応的に達成できることを示す。
論文 参考訳(メタデータ) (2020-03-26T07:15:28Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。