論文の概要: Trajectory-Prediction with Vision: A Survey
- arxiv url: http://arxiv.org/abs/2303.13354v1
- Date: Wed, 15 Mar 2023 01:06:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-25 02:31:51.855657
- Title: Trajectory-Prediction with Vision: A Survey
- Title(参考訳): 視力による軌道予測:サーベイ
- Authors: Apoorv Singh
- Abstract要約: 軌道予測は極めて困難な課題であり、最近自動運転車研究コミュニティで注目を集めている。
優れた予測モデルでは、道路上の衝突を防止でき、従って自動運転車の最終的な目標である衝突速度は、数百万マイル毎の衝突である。
我々は,関連アルゴリズムを異なるクラスに分類し,軌道予測研究分野のトレンドを追究する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To plan a safe and efficient route, an autonomous vehicle should anticipate
future trajectories of other agents around it. Trajectory prediction is an
extremely challenging task which recently gained a lot of attention in the
autonomous vehicle research community. Trajectory-prediction forecasts future
state of all the dynamic agents in the scene given their current and past
states. A good prediction model can prevent collisions on the road, and hence
the ultimate goal for autonomous vehicles: Collision rate: collisions per
Million miles. The objective of this paper is to provide an overview of the
field trajectory-prediction. We categorize the relevant algorithms into
different classes so that researchers can follow through the trends in the
trajectory-prediction research field. Moreover we also touch upon the
background knowledge required to formulate a trajectory-prediction problem.
- Abstract(参考訳): 安全で効率的なルートを計画するには、自動運転車は周囲の他のエージェントの将来の軌道を予測する必要がある。
軌道予測は、最近自動運転車研究コミュニティで注目を集めた非常に困難なタスクである。
軌道予測は、現在の状態と過去の状態から、シーン内のすべての動的エージェントの将来の状態を予測する。
良い予測モデルは、道路上の衝突を防ぐことができ、したがって自動運転車の最終的な目標である衝突速度:数百万マイル毎の衝突。
本研究の目的は, フィールド軌道予測の概観を提供することである。
関連するアルゴリズムを異なるクラスに分類し、研究者が軌道予測研究分野のトレンドを追跡できるようにします。
さらに,軌道予測問題の定式化に必要な背景知識にも触れる。
関連論文リスト
- Manipulating Trajectory Prediction with Backdoors [94.22382859996453]
軌道予測に影響を及ぼす可能性のある4つのトリガを記述し,検討した。
モデルの性能は良好だが、バックドアには弱い。
バックドアに対する防御範囲を評価する。
論文 参考訳(メタデータ) (2023-12-21T14:01:51Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
道路員の将来の軌跡予測への伝統的なアプローチは、過去の軌跡を知ることに依存している。
この研究は、交差点で複数の車両の予測を行うために、現在の状態と意図された方向を知ることに依存する。
この情報を車両間で送るメッセージは、それぞれがより総合的な環境概要を提供する。
論文 参考訳(メタデータ) (2023-01-06T15:13:23Z) - Multi-modal Transformer Path Prediction for Autonomous Vehicle [15.729029675380083]
ターゲットエージェントの長期的軌跡予測を目的としたMTPP(Multi-modal Transformer Path Prediction)と呼ばれる経路予測システムを提案する。
より正確な経路予測を実現するため,トランスフォーマーアーキテクチャをモデルに適用した。
実世界の軌跡予測データセットであるnuSceneを用いて,提案システムの有効性を定量的に評価した。
論文 参考訳(メタデータ) (2022-08-15T15:09:26Z) - Self-Supervised Action-Space Prediction for Automated Driving [0.0]
本稿では,自動走行のための新しい学習型マルチモーダル軌道予測アーキテクチャを提案する。
学習問題を加速度と操舵角の空間に投入することにより、運動論的に実現可能な予測を実現する。
提案手法は,都市交差点とラウンドアバウトを含む実世界のデータセットを用いて評価する。
論文 参考訳(メタデータ) (2021-09-21T08:27:56Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - LOKI: Long Term and Key Intentions for Trajectory Prediction [22.097307597204736]
軌道予測の最近の進歩は、エージェントの意図に関する明確な推論が、その動きを正確に予測することが重要であることを示している。
共同軌道と意図予測に対処するために設計された,新しい大規模データセットであるLOKI(Long term and Key Intentions)を提案する。
提案手法は,最先端の軌道予測手法を最大27%まで向上させ,フレームワイドな意図推定のためのベースラインを提供する。
論文 参考訳(メタデータ) (2021-08-18T16:57:03Z) - TNT: Target-driveN Trajectory Prediction [76.21200047185494]
我々は移動エージェントのための目標駆動軌道予測フレームワークを開発した。
我々は、車や歩行者の軌道予測をベンチマークする。
私たちはArgoverse Forecasting、InterAction、Stanford Drone、および社内のPedestrian-at-Intersectionデータセットの最先端を達成しています。
論文 参考訳(メタデータ) (2020-08-19T06:52:46Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。