論文の概要: Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information
- arxiv url: http://arxiv.org/abs/2301.02561v1
- Date: Fri, 6 Jan 2023 15:13:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 23:58:26.982385
- Title: Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information
- Title(参考訳): 状態情報と意図情報を用いた交差点における多車軌道予測
- Authors: Dekai Zhu, Qadeer Khan, Daniel Cremers
- Abstract要約: 道路員の将来の軌跡予測への伝統的なアプローチは、過去の軌跡を知ることに依存している。
この研究は、交差点で複数の車両の予測を行うために、現在の状態と意図された方向を知ることに依存する。
この情報を車両間で送るメッセージは、それぞれがより総合的な環境概要を提供する。
- 参考スコア(独自算出の注目度): 50.40632021583213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional approaches to prediction of future trajectory of road agents rely
on knowing information about their past trajectory. This work rather relies
only on having knowledge of the current state and intended direction to make
predictions for multiple vehicles at intersections. Furthermore, message
passing of this information between the vehicles provides each one of them a
more holistic overview of the environment allowing for a more informed
prediction. This is done by training a neural network which takes the state and
intent of the multiple vehicles to predict their future trajectory. Using the
intention as an input allows our approach to be extended to additionally
control the multiple vehicles to drive towards desired paths. Experimental
results demonstrate the robustness of our approach both in terms of trajectory
prediction and vehicle control at intersections. The complete training and
evaluation code for this work is available here:
\url{https://github.com/Dekai21/Multi_Agent_Intersection}.
- Abstract(参考訳): 道路員の将来の軌跡予測への伝統的なアプローチは、過去の軌跡を知ることに依存している。
この研究はむしろ、交差点で複数の車両の予測を行うための現在の状態と意図した方向の知識のみに依存している。
さらに、車両間のこれらの情報のメッセージパッシングは、それぞれにより総合的な環境概要を提供し、より情報的な予測を可能にする。
これは、複数の車両の状態と意図を使って将来の軌道を予測するニューラルネットワークのトレーニングによって行われる。
インプットとして意図を使用することで、複数の車両が望ましい経路に向かって走行できるように、アプローチを拡張できます。
実験により,交差点における軌道予測と車両制御の両面でのアプローチの堅牢性を示す。
この作業のための完全なトレーニングと評価コードは、ここで入手できる。
関連論文リスト
- Multimodal Trajectory Prediction for Autonomous Driving on Unstructured Roads using Deep Convolutional Network [15.950227451262919]
露天掘り鉱業における自動運転の応用は、安全で効率的な輸送を実現するための注目を集めている。
対象車両の複数の軌道とその確率を予測する手法を提案する。
この方法は、オープンピットマイニングにおける自律運転シナリオに特化したデータセット上で、オフラインでテストされた。
論文 参考訳(メタデータ) (2024-09-27T02:29:02Z) - BEVSeg2TP: Surround View Camera Bird's-Eye-View Based Joint Vehicle
Segmentation and Ego Vehicle Trajectory Prediction [4.328789276903559]
軌道予測は自動車の自律性にとって重要な課題である。
学習に基づく軌道予測への関心が高まっている。
認識能力を向上させる可能性があることが示される。
論文 参考訳(メタデータ) (2023-12-20T15:02:37Z) - Trajectory-Prediction with Vision: A Survey [0.0]
軌道予測は極めて困難な課題であり、最近自動運転車研究コミュニティで注目を集めている。
優れた予測モデルでは、道路上の衝突を防止でき、従って自動運転車の最終的な目標である衝突速度は、数百万マイル毎の衝突である。
我々は,関連アルゴリズムを異なるクラスに分類し,軌道予測研究分野のトレンドを追究する。
論文 参考訳(メタデータ) (2023-03-15T01:06:54Z) - Behavioral Intention Prediction in Driving Scenes: A Survey [70.53285924851767]
行動意図予測(BIP)は、人間の思考過程をシミュレートし、特定の行動の早期予測を満たす。
この作業は、利用可能なデータセット、重要な要因と課題、歩行者中心および車両中心のBIPアプローチ、BIP対応アプリケーションからのBIPの包括的なレビューを提供する。
論文 参考訳(メタデータ) (2022-11-01T11:07:37Z) - Multi-modal Transformer Path Prediction for Autonomous Vehicle [15.729029675380083]
ターゲットエージェントの長期的軌跡予測を目的としたMTPP(Multi-modal Transformer Path Prediction)と呼ばれる経路予測システムを提案する。
より正確な経路予測を実現するため,トランスフォーマーアーキテクチャをモデルに適用した。
実世界の軌跡予測データセットであるnuSceneを用いて,提案システムの有効性を定量的に評価した。
論文 参考訳(メタデータ) (2022-08-15T15:09:26Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - TNT: Target-driveN Trajectory Prediction [76.21200047185494]
我々は移動エージェントのための目標駆動軌道予測フレームワークを開発した。
我々は、車や歩行者の軌道予測をベンチマークする。
私たちはArgoverse Forecasting、InterAction、Stanford Drone、および社内のPedestrian-at-Intersectionデータセットの最先端を達成しています。
論文 参考訳(メタデータ) (2020-08-19T06:52:46Z) - Probabilistic Multi-modal Trajectory Prediction with Lane Attention for
Autonomous Vehicles [10.485790589381704]
軌道予測は自動運転車にとって不可欠である。
レーン表現のための新しいインスタンス認識表現を提案する。
提案したレーン表現とレーンアテンションモジュールは,広く使用されているエンコーダデコーダフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2020-07-06T07:57:23Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。