TinyML: Tools, Applications, Challenges, and Future Research Directions
- URL: http://arxiv.org/abs/2303.13569v1
- Date: Thu, 23 Mar 2023 15:29:48 GMT
- Title: TinyML: Tools, Applications, Challenges, and Future Research Directions
- Authors: Rakhee Kallimani and Krishna Pai and Prasoon Raghuwanshi and Sridhar
Iyer and Onel L. A. L\'opez
- Abstract summary: TinyML is an embedded machine learning technique that enables ML applications on cheap, resource- and power-constrained devices.
This article reviews various avenues available for TinyML implementation.
- Score: 2.9398911304923456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Artificial Intelligence (AI) and Machine learning (ML) have
gained significant interest from both, industry and academia. Notably,
conventional ML techniques require enormous amounts of power to meet the
desired accuracy, which has limited their use mainly to high-capability devices
such as network nodes. However, with many advancements in technologies such as
the Internet of Things (IoT) and edge computing, it is desirable to incorporate
ML techniques into resource-constrained embedded devices for distributed and
ubiquitous intelligence. This has motivated the emergence of the TinyML
paradigm which is an embedded ML technique that enables ML applications on
multiple cheap, resource- and power-constrained devices. However, during this
transition towards appropriate implementation of the TinyML technology,
multiple challenges such as processing capacity optimization, improved
reliability, and maintenance of learning models' accuracy require timely
solutions. In this article, various avenues available for TinyML implementation
are reviewed. Firstly, a background of TinyML is provided, followed by detailed
discussions on various tools supporting TinyML. Then, state-of-art applications
of TinyML using advanced technologies are detailed. Lastly, various research
challenges and future directions are identified.
Related papers
- On-device Online Learning and Semantic Management of TinyML Systems [8.183732025472766]
This study aims to bridge the gap between prototyping single TinyML models and developing reliable TinyML systems in production.
We propose online learning to enable training on constrained devices, adapting local models towards the latest field conditions.
We present semantic management for the joint management of models and devices at scale.
arXiv Detail & Related papers (2024-05-13T10:03:34Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - A review of TinyML [0.0]
The TinyML concept for embedded machine learning attempts to push such diversity from usual high-end approaches to low-end applications.
TinyML is a rapidly expanding interdisciplinary topic at the convergence of machine learning, software, and hardware.
This paper explores how TinyML can benefit a few specific industrial fields, its obstacles, and its future scope.
arXiv Detail & Related papers (2022-11-05T06:02:08Z) - SeLoC-ML: Semantic Low-Code Engineering for Machine Learning
Applications in Industrial IoT [9.477629856092218]
This paper presents a framework called Semantic Low-Code Engineering for ML Applications (SeLoC-ML)
SeLoC-ML enables non-experts to model, discover, reuse, and matchmake ML models and devices at scale.
Developers can benefit from semantic application templates, called recipes, to fast prototype end-user applications.
arXiv Detail & Related papers (2022-07-18T13:06:21Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
Machine learning (ML) has become a pervasive tool across computing systems.
Tiny robot learning is the deployment of ML on resource-constrained low-cost autonomous robots.
Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints.
This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
arXiv Detail & Related papers (2022-05-11T19:36:15Z) - How to Manage Tiny Machine Learning at Scale: An Industrial Perspective [5.384059021764428]
Tiny machine learning (TinyML) has gained widespread popularity where machine learning (ML) is democratized on ubiquitous microcontrollers.
TinyML models have been developed with different structures and are often distributed without a clear understanding of their working principles.
We propose a framework using Semantic Web technologies to enable the joint management of TinyML models and IoT devices at scale.
arXiv Detail & Related papers (2022-02-18T10:36:11Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z) - Widening Access to Applied Machine Learning with TinyML [1.1678513163359947]
We describe our pedagogical approach to increasing access to applied machine-learning (ML) through a massive open online course (MOOC) on Tiny Machine Learning (TinyML)
To this end, a collaboration between academia (Harvard University) and industry (Google) produced a four-part MOOC that provides application-oriented instruction on how to develop solutions using TinyML.
The series is openly available on the edX MOOC platform, has no prerequisites beyond basic programming, and is designed for learners from a global variety of backgrounds.
arXiv Detail & Related papers (2021-06-07T23:31:47Z) - White Paper Machine Learning in Certified Systems [70.24215483154184]
DEEL Project set-up the ML Certification 3 Workgroup (WG) set-up by the Institut de Recherche Technologique Saint Exup'ery de Toulouse (IRT)
arXiv Detail & Related papers (2021-03-18T21:14:30Z) - Understanding the Usability Challenges of Machine Learning In
High-Stakes Decision Making [67.72855777115772]
Machine learning (ML) is being applied to a diverse and ever-growing set of domains.
In many cases, domain experts -- who often have no expertise in ML or data science -- are asked to use ML predictions to make high-stakes decisions.
We investigate the ML usability challenges present in the domain of child welfare screening through a series of collaborations with child welfare screeners.
arXiv Detail & Related papers (2021-03-02T22:50:45Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.