論文の概要: PPG-based Heart Rate Estimation with Efficient Sensor Sampling and
Learning Models
- arxiv url: http://arxiv.org/abs/2303.13636v1
- Date: Thu, 23 Mar 2023 19:47:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-27 16:39:20.956429
- Title: PPG-based Heart Rate Estimation with Efficient Sensor Sampling and
Learning Models
- Title(参考訳): 効率的なセンササンプリングと学習モデルを用いたPGGによる心拍数推定
- Authors: Yuntong Zhang, Jingye Xu, Mimi Xie, Wei Wang, Keying Ye, Jing Wang,
Dakai Zhu
- Abstract要約: ウェアラブルデバイスに埋め込まれた光胸部センサーは、心拍数(HR)を高精度に推定することができる。
しかしながら, PPGセンサを用いたHR推定を組込みデバイスに適用することは, エネルギー集中型高周波PSGサンプリングによる課題に直面している。
本研究では,低消費電力・資源制約の組込みデバイスに適したHR推定手法を提案する。
- 参考スコア(独自算出の注目度): 6.157700936357335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies showed that Photoplethysmography (PPG) sensors embedded in
wearable devices can estimate heart rate (HR) with high accuracy. However,
despite of prior research efforts, applying PPG sensor based HR estimation to
embedded devices still faces challenges due to the energy-intensive
high-frequency PPG sampling and the resource-intensive machine-learning models.
In this work, we aim to explore HR estimation techniques that are more suitable
for lower-power and resource-constrained embedded devices. More specifically,
we seek to design techniques that could provide high-accuracy HR estimation
with low-frequency PPG sampling, small model size, and fast inference time.
First, we show that by combining signal processing and ML, it is possible to
reduce the PPG sampling frequency from 125 Hz to only 25 Hz while providing
higher HR estimation accuracy. This combination also helps to reduce the ML
model feature size, leading to smaller models. Additionally, we present a
comprehensive analysis on different ML models and feature sizes to compare
their accuracy, model size, and inference time. The models explored include
Decision Tree (DT), Random Forest (RF), K-nearest neighbor (KNN), Support
vector machines (SVM), and Multi-layer perceptron (MLP). Experiments were
conducted using both a widely-utilized dataset and our self-collected dataset.
The experimental results show that our method by combining signal processing
and ML had only 5% error for HR estimation using low-frequency PPG data.
Moreover, our analysis showed that DT models with 10 to 20 input features
usually have good accuracy, while are several magnitude smaller in model sizes
and faster in inference time.
- Abstract(参考訳): 最近の研究では、ウェアラブルデバイスに埋め込まれた光胸腺撮影(PPG)センサーが、心拍数(HR)を高精度に推定できることが示されている。
しかし, 従来の研究成果にもかかわらず, PPGセンサを用いたHR推定を組込みデバイスに適用することは, エネルギー集約型高周波PSGサンプリングと資源集約型機械学習モデルによる課題に直面している。
本研究では,低消費電力・資源制約の組込みデバイスに適したHR推定手法を提案する。
具体的には,低周波PSGサンプリング,小型モデルサイズ,高速推論時間を用いて高精度なHR推定を実現する手法を提案する。
まず,信号処理とMLを組み合わせることで,PPGサンプリング周波数を125Hzから25Hzに低減し,高いHR推定精度が得られることを示す。
この組み合わせはMLモデルの特徴サイズの削減にも役立ち、より小さなモデルに繋がる。
さらに,様々なmlモデルと特徴サイズの包括的分析を行い,その精度,モデルサイズ,推論時間を比較した。
探索されたモデルには、決定木(DT)、ランダムフォレスト(RF)、K-アネレスト隣人(KNN)、サポートベクトルマシン(SVM)、マルチ層パーセプトロン(MLP)などがある。
広範に活用されたデータセットと自己収集したデータセットの両方を用いて実験を行った。
実験の結果,低周波PSGデータを用いたHR推定において,信号処理とMLの組み合わせによる誤差は5%に過ぎなかった。
さらに,10~20の入力特性を持つdtモデルでは,モデルサイズが数桁小さく,推論時間が速いのに対し,精度が良好であることを示した。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - Efficient and Direct Inference of Heart Rate Variability using Both
Signal Processing and Machine Learning [15.877746886929831]
心拍変動(Heart Rate Variability、HRV)は、連続する心拍間の時間の変化を測定し、身体的および精神的な健康の指標である。
近年の研究では、光胸腺画像センサを用いてHRVを推定できることが示されている。
しかし、多くの先行研究では、信号処理や機械学習(ML)しか使わなかったため、高い誤差があった。
論文 参考訳(メタデータ) (2023-03-23T19:47:53Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Photoelectric Factor Prediction Using Automated Learning and Uncertainty
Quantification [0.0]
光電率(PEF)は、異なる種類の貯水池岩を識別するための重要な井戸検層ツールである。
岩石鉱物の比は、PEFログと他の井戸ログを組み合わせることで決定できる。
しかし、古い井戸の丸太やバリウムベースの泥で掘削された井戸など、一部のケースではPEFログが欠落する可能性がある。
論文 参考訳(メタデータ) (2022-06-17T18:03:38Z) - Q-PPG: Energy-Efficient PPG-based Heart Rate Monitoring on Wearable
Devices [22.7371904884504]
本稿では、人事監視のための深層時間畳み込みネットワーク(TCN)のリッチなファミリーを自動生成する設計手法を提案する。
私たちの最も正確なモデルは、平均絶対誤差で新しい最先端のモデルを設定します。
我々は,STM32WB55マイクロコントローラを内蔵した組み込みプラットフォーム上にTCNを配置し,リアルタイム実行に適していることを示す。
論文 参考訳(メタデータ) (2022-03-24T10:50:33Z) - Embedding Temporal Convolutional Networks for Energy-Efficient PPG-Based
Heart Rate Monitoring [17.155316991045765]
Photoplethysmography (volution) センサーは非侵襲的で快適な心拍数モニタリングを可能にする。
モーションアーティファクト(MA)はモニタリングの精度に大きく影響を与え、皮膚とセンサーのインターフェースに高いばらつきをもたらす。
PPGに基づく人事推定のための計算軽量で頑健な深層学習手法を提案する。
PPGDaliaのMean Absolute Error(MAE)の3.84 Beats per Minute(BPM)という2つのベンチマークデータセットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2022-03-01T17:04:28Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A Novel Non-Invasive Estimation of Respiration Rate from
Photoplethysmograph Signal Using Machine Learning Model [0.0]
呼吸速度 (RR) は患者の健康を示す重要な指標である。
リアルタイムの連続RRモニタリング施設は集中ケアユニット(ICU)でのみ利用可能です。
最近の研究では、RR推定のためのPhotoplethysmogram(ECG)および/心電図(ECG)信号が提案されている。
本稿では,PPG信号特性を有する機械学習(ML)モデルを用いたRR推定手法について述べる。
論文 参考訳(メタデータ) (2021-02-18T17:08:50Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z) - Assessing Graph-based Deep Learning Models for Predicting Flash Point [52.931492216239995]
グラフベースのディープラーニング(GBDL)モデルは初めてフラッシュポイントを予測するために実装された。
MPNNの平均R2と平均絶対誤差(MAE)は、それぞれ2.3%低、2.0K高である。
論文 参考訳(メタデータ) (2020-02-26T06:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。