A Survey on Secure and Private Federated Learning Using Blockchain:
Theory and Application in Resource-constrained Computing
- URL: http://arxiv.org/abs/2303.13727v1
- Date: Fri, 24 Mar 2023 00:40:08 GMT
- Title: A Survey on Secure and Private Federated Learning Using Blockchain:
Theory and Application in Resource-constrained Computing
- Authors: Ervin Moore, Ahmed Imteaj, Shabnam Rezapour, M. Hadi Amini
- Abstract summary: Federated Learning (FL) has gained widespread popularity in recent years due to the fast booming of advanced machine learning and artificial intelligence.
The performance of the FL process can be threatened and reached a bottleneck due to the growing cyber threats and privacy violation techniques.
To expedite the proliferation of FL process, the integration of blockchain for FL environments has drawn prolific attention from the people of academia and industry.
- Score: 0.8029049649310213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has gained widespread popularity in recent years due
to the fast booming of advanced machine learning and artificial intelligence
along with emerging security and privacy threats. FL enables efficient model
generation from local data storage of the edge devices without revealing the
sensitive data to any entities. While this paradigm partly mitigates the
privacy issues of users' sensitive data, the performance of the FL process can
be threatened and reached a bottleneck due to the growing cyber threats and
privacy violation techniques. To expedite the proliferation of FL process, the
integration of blockchain for FL environments has drawn prolific attention from
the people of academia and industry. Blockchain has the potential to prevent
security and privacy threats with its decentralization, immutability,
consensus, and transparency characteristic. However, if the blockchain
mechanism requires costly computational resources, then the
resource-constrained FL clients cannot be involved in the training. Considering
that, this survey focuses on reviewing the challenges, solutions, and future
directions for the successful deployment of blockchain in resource-constrained
FL environments. We comprehensively review variant blockchain mechanisms that
are suitable for FL process and discuss their trade-offs for a limited resource
budget. Further, we extensively analyze the cyber threats that could be
observed in a resource-constrained FL environment, and how blockchain can play
a key role to block those cyber attacks. To this end, we highlight some
potential solutions towards the coupling of blockchain and federated learning
that can offer high levels of reliability, data privacy, and distributed
computing performance.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Blockchain-empowered Federated Learning: Benefits, Challenges, and Solutions [31.18229828293164]
Federated learning (FL) is a distributed machine learning approach that protects user data privacy by training models locally on clients and aggregating them on a parameter server.
While effective at preserving privacy, FL systems face limitations such as single points of failure, lack of incentives, and inadequate security.
To address these challenges, blockchain technology is integrated into FL systems to provide stronger security, fairness, and scalability.
arXiv Detail & Related papers (2024-03-01T07:41:05Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Privacy-Preserving in Blockchain-based Federated Learning Systems [14.658288580398974]
Federated Learning (FL) has recently arisen as a revolutionary approach to collaborative training Machine Learning models.
Security, and privacy concerns arise due to the distributed nature of this solution.
This paper explores the research efforts carried out by the scientific community to define privacy solutions.
arXiv Detail & Related papers (2024-01-07T17:23:55Z) - On the Decentralization of Blockchain-enabled Asynchronous Federated
Learning [3.3701306798873305]
Federated learning (FL) is expected to enable true real-time applications in production environments.
The empowerment of FL through blockchain (also referred to as FLchain) has some implications in terms of ledger inconsistencies and age of information (AoI)
In this paper, we shed light on the implications of the FLchain setting and study the effect that both the AoI and ledger inconsistencies have on the FL performance.
arXiv Detail & Related papers (2022-05-20T14:20:47Z) - A Systematic Survey of Blockchained Federated Learning [22.710611199826925]
Federated learning (FL) can prevent privacy leakage by assigning training tasks to multiple clients.
FL still suffers from shortcomings such as single-point-failure and malicious data.
The emergence of blockchain provides a secure and efficient solution for the deployment of FL.
arXiv Detail & Related papers (2021-10-05T17:21:52Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO)
The issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency.
We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for theO.
arXiv Detail & Related papers (2020-04-08T16:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.