Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness
Constraint
- URL: http://arxiv.org/abs/2303.13790v1
- Date: Fri, 24 Mar 2023 03:59:19 GMT
- Title: Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness
Constraint
- Authors: Chia-Yuan Chang, Jiayi Yuan, Sirui Ding, Qiaoyu Tan, Kai Zhang,
Xiaoqian Jiang, Xia Hu, Na Zou
- Abstract summary: This work proposes a fair patient-trial matching framework by generating a patient-criterion level fairness constraint.
The experimental results on real-world patient-trial and patient-criterion matching tasks demonstrate that the proposed framework can successfully alleviate the predictions that tend to be biased.
- Score: 50.35075018041199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical trials are indispensable in developing new treatments, but they face
obstacles in patient recruitment and retention, hindering the enrollment of
necessary participants. To tackle these challenges, deep learning frameworks
have been created to match patients to trials. These frameworks calculate the
similarity between patients and clinical trial eligibility criteria,
considering the discrepancy between inclusion and exclusion criteria. Recent
studies have shown that these frameworks outperform earlier approaches.
However, deep learning models may raise fairness issues in patient-trial
matching when certain sensitive groups of individuals are underrepresented in
clinical trials, leading to incomplete or inaccurate data and potential harm.
To tackle the issue of fairness, this work proposes a fair patient-trial
matching framework by generating a patient-criterion level fairness constraint.
The proposed framework considers the inconsistency between the embedding of
inclusion and exclusion criteria among patients of different sensitive groups.
The experimental results on real-world patient-trial and patient-criterion
matching tasks demonstrate that the proposed framework can successfully
alleviate the predictions that tend to be biased.
Related papers
- A Flexible Framework for Incorporating Patient Preferences Into
Q-Learning [1.2891210250935146]
In real-world healthcare problems, there are often multiple competing outcomes of interest, such as treatment efficacy and side effect severity.
statistical methods for estimating dynamic treatment regimes (DTRs) usually assume a single outcome of interest.
This includes restrictions to a single time point and two outcomes, the inability to incorporate self-reported patient preferences and limited theoretical guarantees.
arXiv Detail & Related papers (2023-07-22T08:58:07Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - AutoTrial: Prompting Language Models for Clinical Trial Design [53.630479619856516]
We present a method named AutoTrial to aid the design of clinical eligibility criteria using language models.
Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts.
arXiv Detail & Related papers (2023-05-19T01:04:16Z) - Clinical trial site matching with improved diversity using fair policy
learning [56.01170456417214]
We learn a model that maps a clinical trial description to a ranked list of potential trial sites.
Unlike existing fairness frameworks, the group membership of each trial site is non-binary.
We propose fairness criteria based on demographic parity to address such a multi-group membership scenario.
arXiv Detail & Related papers (2022-04-13T16:35:28Z) - An Empirical Characterization of Fair Machine Learning For Clinical Risk
Prediction [7.945729033499554]
The use of machine learning to guide clinical decision making has the potential to worsen existing health disparities.
Several recent works frame the problem as that of algorithmic fairness, a framework that has attracted considerable attention and criticism.
We conduct an empirical study to characterize the impact of penalizing group fairness violations on an array of measures of model performance and group fairness.
arXiv Detail & Related papers (2020-07-20T17:46:31Z) - COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching [70.08786840301435]
We propose CrOss-Modal PseudO-SiamEse network (COMPOSE) to address these challenges for patient-trial matching.
Experiment results show COMPOSE can reach 98.0% AUC on patient-criteria matching and 83.7% accuracy on patient-trial matching.
arXiv Detail & Related papers (2020-06-15T21:01:33Z) - Contextual Constrained Learning for Dose-Finding Clinical Trials [102.8283665750281]
C3T-Budget is a contextual constrained clinical trial algorithm for dose-finding under both budget and safety constraints.
It recruits patients with consideration of the remaining budget, the remaining time, and the characteristics of each group.
arXiv Detail & Related papers (2020-01-08T11:46:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.