Fairness-aware organ exchange and kidney paired donation
- URL: http://arxiv.org/abs/2503.06431v1
- Date: Sun, 09 Mar 2025 04:01:08 GMT
- Title: Fairness-aware organ exchange and kidney paired donation
- Authors: Mingrui Zhang, Xiaowu Dai, Lexin Li,
- Abstract summary: The kidney paired donation (KPD) program provides an innovative solution to overcome incompatibility challenges in kidney transplants.<n>To address unequal access to transplant opportunities, there are two widely used fairness criteria: group fairness and individual fairness.<n>Motivated by the calibration principle in machine learning, we introduce a new fairness criterion: the matching outcome should be conditionally independent of the protected feature.
- Score: 10.277630436997365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The kidney paired donation (KPD) program provides an innovative solution to overcome incompatibility challenges in kidney transplants by matching incompatible donor-patient pairs and facilitating kidney exchanges. To address unequal access to transplant opportunities, there are two widely used fairness criteria: group fairness and individual fairness. However, these criteria do not consider protected patient features, which refer to characteristics legally or ethically recognized as needing protection from discrimination, such as race and gender. Motivated by the calibration principle in machine learning, we introduce a new fairness criterion: the matching outcome should be conditionally independent of the protected feature, given the sensitization level. We integrate this fairness criterion as a constraint within the KPD optimization framework and propose a computationally efficient solution. Theoretically, we analyze the associated price of fairness using random graph models. Empirically, we compare our fairness criterion with group fairness and individual fairness through both simulations and a real-data example.
Related papers
- Finite-Sample and Distribution-Free Fair Classification: Optimal Trade-off Between Excess Risk and Fairness, and the Cost of Group-Blindness [14.421493372559762]
We quantify the impact of enforcing algorithmic fairness and group-blindness in binary classification under group fairness constraints.
We propose a unified framework for fair classification that provides distribution-free and finite-sample fairness guarantees with controlled excess risk.
arXiv Detail & Related papers (2024-10-21T20:04:17Z) - A Data Envelopment Analysis Approach for Assessing Fairness in Resource Allocation: Application to Kidney Exchange Programs [3.130722489512822]
We present a novel framework leveraging Data Envelopment Analysis (DEA) to evaluate fairness criteria.
We analyze Priority fairness through waitlist durations, Access fairness through Kidney Donor Profile Index scores, and Outcome fairness through graft lifespan.
Our study provides a rigorous framework for evaluating fairness in complex resource allocation systems.
arXiv Detail & Related papers (2024-09-18T15:17:43Z) - On the (In)Compatibility between Group Fairness and Individual Fairness [3.6052935394000234]
We study the compatibility between the optimal statistical parity solutions and individual fairness.
We provide individual fairness guarantees for the composition of a trained model and the optimal post-processing step.
arXiv Detail & Related papers (2024-01-13T23:38:10Z) - Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness
Constraint [50.35075018041199]
This work proposes a fair patient-trial matching framework by generating a patient-criterion level fairness constraint.
The experimental results on real-world patient-trial and patient-criterion matching tasks demonstrate that the proposed framework can successfully alleviate the predictions that tend to be biased.
arXiv Detail & Related papers (2023-03-24T03:59:19Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Fairness and robustness in anti-causal prediction [73.693135253335]
Robustness to distribution shift and fairness have independently emerged as two important desiderata required of machine learning models.
While these two desiderata seem related, the connection between them is often unclear in practice.
By taking this perspective, we draw explicit connections between a common fairness criterion - separation - and a common notion of robustness.
arXiv Detail & Related papers (2022-09-20T02:41:17Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
We analyze the intersection of fairness in machine learning and healthcare disparities.
We provide a critical review of the associated fairness metrics from a machine learning standpoint.
We propose several new research directions that hold promise for developing ethical and equitable ML applications in healthcare.
arXiv Detail & Related papers (2022-06-29T04:32:10Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Fair Tree Learning [0.15229257192293202]
Various optimisation criteria combine classification performance with a fairness metric.
Current fair decision tree methods only optimise for a fixed threshold on both the classification task as well as the fairness metric.
We propose a threshold-independent fairness metric termed uniform demographic parity, and a derived splitting criterion entitled SCAFF -- Splitting Criterion AUC for Fairness.
arXiv Detail & Related papers (2021-10-18T13:40:25Z) - Beyond Individual and Group Fairness [90.4666341812857]
We present a new data-driven model of fairness that is guided by the unfairness complaints received by the system.
Our model supports multiple fairness criteria and takes into account their potential incompatibilities.
arXiv Detail & Related papers (2020-08-21T14:14:44Z) - FACT: A Diagnostic for Group Fairness Trade-offs [23.358566041117083]
Group fairness is a class of fairness notions that measure how different groups of individuals are treated differently according to their protected attributes.
We propose a general diagnostic that enables systematic characterization of these trade-offs in group fairness.
arXiv Detail & Related papers (2020-04-07T14:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.