Simulation of 1/f charge noise affecting a quantum dot in a Si/SiGe structure
- URL: http://arxiv.org/abs/2303.13968v2
- Date: Thu, 8 Aug 2024 04:19:57 GMT
- Title: Simulation of 1/f charge noise affecting a quantum dot in a Si/SiGe structure
- Authors: Marcin Kępa, Niels Focke, Łukasz Cywiński, Jan. A. Krzywda,
- Abstract summary: We investigate theoretically fluctuations of ground state energy of an electron in gated quantum dot in realistic Si/SiGe structure.
We assume that the charge noise is caused by motion of charges trapped at the semiconductor-oxide interface.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to presence of magnetic field gradient needed for coherent spin control, dephasing of single-electron spin qubits in silicon quantum dots is often dominated by $1/f$ charge noise. We investigate theoretically fluctuations of ground state energy of an electron in gated quantum dot in realistic Si/SiGe structure. We assume that the charge noise is caused by motion of charges trapped at the semiconductor-oxide interface. We consider a realistic range of trapped charge densities, $\rho \! \sim \! 10^{10}$ cm$^{-2}$, and typical lenghtscales of isotropically distributed displacements of these charges, $\delta r \! \leq \! 1$ nm, and identify pairs $(\rho,\delta r)$ for which the amplitude and shape of the noise spectrum is in good agreement with spectra reconstructed in recent experiments on similar structures.
Related papers
- Noise-induced phase transitions in hybrid quantum circuits [3.625262223613696]
In this work, we investigate the effects of quantum noises with size-dependent probabilities $q=p/Lalpha$ where $alpha$ represents the scaling exponent.
We have identified a noise-induced entanglement phase transition from a volume law to a power (area) law in the presence (absence) of measurements.
This unified picture further deepens the understanding of the connection between entanglement behavior and the capacity of information protection.
arXiv Detail & Related papers (2024-01-30T00:03:56Z) - Interacting Two-Level Systems as a Source of 1/f Charge Noise in Quantum
Dot Qubits [0.0]
Charge noise in semiconducting quantum dots has been observed to have a 1/f spectrum.
We propose a model in which a pair of quantum dots are coupled to a 2D bath of two level systems.
We find that 1/f electric potential noise spectra at the quantum dots and cross correlation in the noise between the two quantum dots are in qualitative agreement with experiment.
arXiv Detail & Related papers (2023-08-25T21:19:51Z) - Anomalous noise spectra in a spin-exchange-relaxation-free alkali-metal vapor [0.0]
We perform spin-noise spectroscopy on an unpolarized $87mathrmRb$ vapor in the spin-exchange-relaxation-free regime.
We observe noise spectral distributions that deviate strongly from Lorentzian models.
We discuss implications for quantum sensing and absolute noise calibration in spin-squeezing and entanglement detection.
arXiv Detail & Related papers (2023-07-31T17:24:57Z) - Distinguishing erbium dopants in Y$_2$O$_3$ by site symmetry: \textit{
ab initio} theory of two spin-photon interfaces [0.0]
We present a first-principles study of defect formation and electronic structure of erbium (Er)-doped yttria (Y$ $4$O$_3$)
This is an emerging material for spin-photon interfaces in quantum information science due to the narrow linewidth optical emission from Er dopants.
We calculate formation energies of neutral, negatively, and positively charged Er dopants and find the charge neutral configuration to be the most stable.
arXiv Detail & Related papers (2023-05-25T16:42:27Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Continuous dynamical decoupling of optical $^{171}$Yb$^{+}$ qudits with
radiofrequency fields [45.04975285107723]
We experimentally achieve a gain in the efficiency of realizing quantum algorithms with qudits.
Our results are a step towards the realization of qudit-based algorithms using trapped ions.
arXiv Detail & Related papers (2023-05-10T11:52:12Z) - Modelling of spin decoherence in a Si hole qubit perturbed by a single
charge fluctuator [0.0]
We simulate a hole spin qubit in a quantum dot defined electrostatically by a set of gates along a silicon nanowire channel.
We show that dephasing time $T$ is well given by a two-level model in a wide range of frequency.
arXiv Detail & Related papers (2022-10-19T11:35:54Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.