論文の概要: Interpretable Motion Planner for Urban Driving via Hierarchical
Imitation Learning
- arxiv url: http://arxiv.org/abs/2303.13986v2
- Date: Sun, 30 Jul 2023 12:54:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 23:18:22.259441
- Title: Interpretable Motion Planner for Urban Driving via Hierarchical
Imitation Learning
- Title(参考訳): 階層的模倣学習による都市走行の解釈可能な運動プランナ
- Authors: Bikun Wang, Zhipeng Wang, Chenhao Zhu, Zhiqiang Zhang, Zhichen Wang,
Penghong Lin, Jingchu Liu and Qian Zhang
- Abstract要約: 本稿では,ハイレベルグリッドベース行動プランナと低レベル軌道プランナを含む階層型計画アーキテクチャを提案する。
高レベルプランナーが一貫した経路を見つける責任があるため、低レベルプランナーは実行可能な軌道を生成する。
本手法をクローズドループシミュレーションと実世界運転の両方で評価し,ニューラルネットワークプランナの優れた性能を実証する。
- 参考スコア(独自算出の注目度): 5.280496662905411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based approaches have achieved remarkable performance in the domain
of autonomous driving. Leveraging the impressive ability of neural networks and
large amounts of human driving data, complex patterns and rules of driving
behavior can be encoded as a model to benefit the autonomous driving system.
Besides, an increasing number of data-driven works have been studied in the
decision-making and motion planning module. However, the reliability and the
stability of the neural network is still full of uncertainty. In this paper, we
introduce a hierarchical planning architecture including a high-level
grid-based behavior planner and a low-level trajectory planner, which is highly
interpretable and controllable. As the high-level planner is responsible for
finding a consistent route, the low-level planner generates a feasible
trajectory. We evaluate our method both in closed-loop simulation and real
world driving, and demonstrate the neural network planner has outstanding
performance in complex urban autonomous driving scenarios.
- Abstract(参考訳): 学習に基づくアプローチは、自律運転の分野で顕著なパフォーマンスを達成した。
ニューラルネットワークの素晴らしい能力と大量の人間の運転データを活用することで、複雑なパターンや運転行動のルールを、自律運転システムに利益をもたらすモデルとしてコード化することができる。
さらに、意思決定と行動計画モジュールにおいて、データ駆動型の研究が増えている。
しかし、ニューラルネットワークの信頼性と安定性はまだ不確実性に満ちている。
本稿では,ハイレベルグリッドベース行動プランナと低レベル軌道プランナを含む階層型計画アーキテクチャを提案する。
高レベルプランナーが一貫した経路を見つける責任があるため、低レベルプランナーは実行可能な軌道を生成する。
本手法をクローズドループシミュレーションと実世界走行の両方で評価し,複雑な都市自律運転シナリオにおいて,ニューラルネットワークプランナが優れた性能を示した。
関連論文リスト
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
従来のルールベースプランナとLCMベースのプランナを併用した,新しいハイブリッドプランナを開発した。
当社のアプローチでは,既存のプランナが苦労する複雑なシナリオをナビゲートし,合理的なアウトプットを生成すると同時に,ルールベースのアプローチと連携して作業する。
論文 参考訳(メタデータ) (2023-12-30T02:53:45Z) - Interpretable and Flexible Target-Conditioned Neural Planners For
Autonomous Vehicles [22.396215670672852]
以前の作業では、1つの計画軌跡を見積もることしか学ばず、現実のシナリオでは複数の許容可能な計画が存在する場合もあります。
本稿では,自律走行車における鳥の視線における複数の潜在的目標を効果的に表現する,熱マップを回帰する解釈可能なニューラルプランナーを提案する。
Lyft Openデータセットの体系的な評価から、当社のモデルは、以前の作業よりも安全で柔軟な運転パフォーマンスを実現しています。
論文 参考訳(メタデータ) (2023-09-23T22:13:03Z) - Integration of Reinforcement Learning Based Behavior Planning With
Sampling Based Motion Planning for Automated Driving [0.5801044612920815]
本研究では,高度行動計画のための訓練された深層強化学習ポリシーを用いる方法を提案する。
私たちの知る限りでは、この研究は、この方法で深層強化学習を適用した最初のものである。
論文 参考訳(メタデータ) (2023-04-17T13:49:55Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Transferable and Adaptable Driving Behavior Prediction [34.606012573285554]
本研究では,運転行動に対して高品質で伝達可能で適応可能な予測を生成する階層型フレームワークであるHATNを提案する。
我々は,交差点における実交通データの軌跡予測と,インターActionデータセットからのラウンドアバウンドのタスクにおいて,我々のアルゴリズムを実証する。
論文 参考訳(メタデータ) (2022-02-10T16:46:24Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
複雑な都市環境での自律走行学習のためのニューラルモーションプランナー(NMP)を提案する。
我々は,生lidarデータとhdマップを入力とし,解釈可能な中間表現を生成する全体モデルを設計した。
北米のいくつかの都市で収集された実世界の運転データにおける我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2021-01-17T14:16:12Z) - Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning [21.500697097095408]
不確実かつ動的条件下で安全な軌道を計画することは、自律運転問題を著しく複雑にする。
RRT(Rapidly Exploring Random Trees)のような現在のサンプリングベース手法は、高い計算コストのため、この問題には理想的ではない。
軌道計画のための階層型強化学習構造とPID(Proportional-Integral-Derivative)コントローラを提案する。
論文 参考訳(メタデータ) (2020-11-09T20:49:54Z) - Intelligent Roundabout Insertion using Deep Reinforcement Learning [68.8204255655161]
本稿では,多忙なラウンドアバウンドの入場を交渉できる演習計画モジュールを提案する。
提案されたモジュールは、トレーニングされたニューラルネットワークに基づいて、操作の全期間にわたって、ラウンドアバウンドに入るタイミングと方法を予測する。
論文 参考訳(メタデータ) (2020-01-03T11:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。