論文の概要: Machine Psychology: Investigating Emergent Capabilities and Behavior in Large Language Models Using Psychological Methods
- arxiv url: http://arxiv.org/abs/2303.13988v5
- Date: Mon, 8 Jul 2024 18:15:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 00:50:53.081960
- Title: Machine Psychology: Investigating Emergent Capabilities and Behavior in Large Language Models Using Psychological Methods
- Title(参考訳): 機械心理学:心理学的手法を用いた大規模言語モデルにおける創発的能力と行動の調査
- Authors: Thilo Hagendorff,
- Abstract要約: 大規模言語モデル(LLM)は、現在、人間のコミュニケーションと日常の生活を結び付けるAIシステムの最前線にある。
本稿では「機械心理学」と呼ばれる新しい研究分野を紹介する。
機械心理学研究の方法論的基準を定義しており、特にプロンプトデザインのポリシーに焦点を当てている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are currently at the forefront of intertwining AI systems with human communication and everyday life. Due to rapid technological advances and their extreme versatility, LLMs nowadays have millions of users and are at the cusp of being the main go-to technology for information retrieval, content generation, problem-solving, etc. Therefore, it is of great importance to thoroughly assess and scrutinize their capabilities. Due to increasingly complex and novel behavioral patterns in current LLMs, this can be done by treating them as participants in psychology experiments that were originally designed to test humans. For this purpose, the paper introduces a new field of research called "machine psychology". The paper outlines how different subfields of psychology can inform behavioral tests for LLMs. It defines methodological standards for machine psychology research, especially by focusing on policies for prompt designs. Additionally, it describes how behavioral patterns discovered in LLMs are to be interpreted. In sum, machine psychology aims to discover emergent abilities in LLMs that cannot be detected by most traditional natural language processing benchmarks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、現在、人間のコミュニケーションと日常の生活を結び付けるAIシステムの最前線にある。
急速な技術進歩と極端な汎用性により、LLMは今や数百万人のユーザを抱えており、情報検索、コンテンツ生成、問題解決などの主要なゴート技術になりつつある。
したがって、その能力を徹底的に評価し、精査することが非常に重要である。
現在のLLMでは、ますます複雑で斬新な行動パターンがあるため、もともと人間をテストするために設計された心理学実験の参加者として扱うことで、これを実現できる。
そこで本研究では,「機械心理学」と呼ばれる新しい研究分野を紹介する。
この論文は、心理学の異なるサブフィールドがLLMの行動テストにどのように影響するかを概説する。
機械心理学研究の方法論的基準を定義しており、特にプロンプトデザインのポリシーに焦点を当てている。
さらに、LLMで発見された行動パターンがどのように解釈されるかを記述する。
要約すると、機械心理学は従来の自然言語処理ベンチマークでは検出できないLLMの創発的能力を発見することを目的としている。
関連論文リスト
- Psychomatics -- A Multidisciplinary Framework for Understanding Artificial Minds [0.319565400223685]
本稿では,認知科学,言語学,コンピュータ科学を橋渡しする心理学を紹介する。
LLMの高レベル機能をよりよく理解することを目的としている。
心理学は、言語の性質、認知、知性に関する変革的な洞察を与える可能性を秘めている。
論文 参考訳(メタデータ) (2024-07-23T12:53:41Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
大きな言語モデル(LLM)は例外的なタスク解決能力を示しており、人間に似た役割を担っている。
本稿では,LLMにおける心理学的次元を調査するための枠組みとして,心理学的識別,評価データセットのキュレーション,結果検証による評価について述べる。
本研究では,個性,価値観,感情,心の理論,モチベーション,知性の6つの心理学的側面を網羅した総合的心理測定ベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-25T16:09:08Z) - LLM Agents for Psychology: A Study on Gamified Assessments [71.08193163042107]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - Exploring the Frontiers of LLMs in Psychological Applications: A Comprehensive Review [4.147674289030404]
大規模言語モデル(LLM)は、人間の認知と行動の側面をシミュレートする可能性がある。
LLMは、文献レビュー、仮説生成、実験的なデザイン、実験的な主題、データ分析、学術的な執筆、心理学におけるピアレビューのための革新的なツールを提供する。
データプライバシ、心理的研究にLLMを使うことの倫理的意味、モデルの制限をより深く理解する必要がある、といった問題があります。
論文 参考訳(メタデータ) (2024-01-03T03:01:29Z) - Who is ChatGPT? Benchmarking LLMs' Psychological Portrayal Using
PsychoBench [83.41621219298489]
大規模言語モデル(LLM)の多様な心理学的側面を評価するためのフレームワーク「サイコベンチ」を提案する。
サイコベンチはこれらの尺度を、性格特性、対人関係、モチベーションテスト、感情能力の4つのカテゴリーに分類する。
我々は、安全アライメントプロトコルをバイパスし、LLMの本質的な性質をテストするためにジェイルブレイクアプローチを採用している。
論文 参考訳(メタデータ) (2023-10-02T17:46:09Z) - Revisiting the Reliability of Psychological Scales on Large Language
Models [66.31055885857062]
本研究では,人格評価を大規模言語モデル(LLM)に適用する際の信頼性について検討する。
LLMのパーソナライズに光を当てることで、この分野での今後の探索の道を開くことに努める。
論文 参考訳(メタデータ) (2023-05-31T15:03:28Z) - Comparing Machines and Children: Using Developmental Psychology
Experiments to Assess the Strengths and Weaknesses of LaMDA Responses [0.02999888908665658]
我々は,Googleの大規模言語モデルであるLaMDAの能力を評価するために,古典的な開発実験を適用した。
社会的理解に関する実験において,LaMDAは子どもと同様の適切な反応を産み出すことがわかった。
一方、初期の対象と行動理解、心の理論、特に因果推論タスクに対するLaMDAの反応は、幼児のそれとは大きく異なる。
論文 参考訳(メタデータ) (2023-05-18T18:15:43Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
人間の個性理論を機械行動研究のツールとして活用することで,心理測定研究からインスピレーションを得た。
これらの疑問に答えるために,機械の動作を研究するためのMachine Personality Inventory(MPI)ツールを紹介した。
MPIは、ビッグファイブ・パーソナリティ・ファクター(Big Five Personality Factors、ビッグファイブ・パーソナリティ・ファクター)理論とパーソナリティ評価在庫に基づく標準化されたパーソナリティ・テストに従う。
パーソナリティ・プロンプト法(P2法)を考案し、特定のパーソナリティを持つLSMを制御可能な方法で誘導する。
論文 参考訳(メタデータ) (2022-05-20T07:32:57Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。