論文の概要: Optimizing the Procedure of CT Segmentation Labeling
- arxiv url: http://arxiv.org/abs/2303.14089v1
- Date: Fri, 24 Mar 2023 15:52:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-27 14:04:03.160802
- Title: Optimizing the Procedure of CT Segmentation Labeling
- Title(参考訳): CTセグメンテーションラベリングの最適化
- Authors: Yaroslav Zharov, Tilo Baumbach, Vincent Heuveline
- Abstract要約: Computed Tomographyでは、機械学習は自動データ処理によく使用される。
本稿では,アノテーションの手順とそのモデル性能への影響について考察する。
モデルトレーニングのために収集された優れたデータセットの主な利点は、ラベルの品質、多様性、完全性である、と仮定する。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Computed Tomography, machine learning is often used for automated data
processing. However, increasing model complexity is accompanied by increasingly
large volume datasets, which in turn increases the cost of model training.
Unlike most work that mitigates this by advancing model architectures and
training algorithms, we consider the annotation procedure and its effect on the
model performance. We assume three main virtues of a good dataset collected for
a model training to be label quality, diversity, and completeness. We compare
the effects of those virtues on the model performance using open medical CT
datasets and conclude, that quality is more important than diversity early
during labeling; the diversity, in turn, is more important than completeness.
Based on this conclusion and additional experiments, we propose a labeling
procedure for the segmentation of tomographic images to minimize efforts spent
on labeling while maximizing the model performance.
- Abstract(参考訳): Computed Tomographyでは、機械学習は自動データ処理によく使用される。
しかし、モデル複雑性の増大には、巨大なボリュームデータセットが伴うため、モデルトレーニングのコストが増大する。
モデルアーキテクチャとトレーニングアルゴリズムの進歩によってこれを緩和するほとんどの作業とは異なり、アノテーションの手順とそのモデル性能への影響について検討する。
モデルトレーニングのために収集された優れたデータセットの主な利点は、ラベルの品質、多様性、完全性である。
これらのメリットがopen medical ctデータセットを用いたモデルパフォーマンスに与える影響を比較し,ラベリングの初期段階における多様性よりも品質が重要であり,その多様性は完全性よりも重要である,と結論づけた。
この結論と追加実験に基づき, モデル性能を最大化しながらラベリングに費やす労力を最小限に抑えるために, 断層画像のセグメンテーションのためのラベリング手順を提案する。
関連論文リスト
- Keypoints-Integrated Instruction-Following Data Generation for Enhanced Human Pose Understanding in Multimodal Models [1.9890559505377343]
本研究では,人間のキーポイントとキャプションやバウンディングボックスといった従来の視覚的特徴を統合することで,そのようなデータを生成する新しい手法を提案する。
提案手法は,人間中心の活動に優れる微調整モデルのために設計されたデータセットを生成する。
実験の結果、LLaVA-7Bモデルと比較して21.18%の改善が見られた。
論文 参考訳(メタデータ) (2024-09-14T05:07:57Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Semi-supervised Medical Image Segmentation Method Based on Cross-pseudo
Labeling Leveraging Strong and Weak Data Augmentation Strategies [2.8246591681333024]
本稿では,Fixmatch の概念を革新的に取り入れた半教師付きモデル DFCPS を提案する。
整合性学習と自己学習を統合したクロス擬似スーパービジョンが導入された。
我々のモデルは、ラベルなしデータの比率が異なる4つの区分全てにおいて、常に優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-17T13:07:44Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
モデル自体が等しくあるいはそれ以上に効果的であるサブセットを積極的にサンプリングできる自己進化メカニズムを導入します。
データサンプリング技術の鍵は、選択したサブセットの多様性の向上にあります。
3つのデータセットとベンチマークにわたる大規模な実験は、DiverseEvolの有効性を示している。
論文 参考訳(メタデータ) (2023-11-14T14:10:40Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Exploring the Effects of Data Augmentation for Drivable Area
Segmentation [0.0]
既存の画像データセットを解析することで、データ拡張の利点を調べることに重点を置いている。
以上の結果から,既存技術(SOTA)モデルの性能とロバスト性は劇的に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2022-08-06T03:39:37Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
セマンティックセグメンテーションデータセットを異なるドメインから統合する合成データセットであるMSegを提案する。
一般化と画素レベルのアノテーションのアライメントを調整し,2万枚以上のオブジェクトマスクを8万枚以上の画像で再現する。
MSegでトレーニングされたモデルは、WildDash-v1のリーダーボードで、トレーニング中にWildDashのデータに触れることなく、堅牢なセマンティックセグメンテーションのためにランク付けされている。
論文 参考訳(メタデータ) (2021-12-27T16:16:35Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
半教師付きアプローチ,特に自己学習パラダイムを用いて,最先端の成果を得ることができることを示す。
まず、ラベル付きデータに基づいて教師モデルを訓練し、次にラベルなしデータの大規模なセット上で擬似ラベルを生成する。
私たちの堅牢なトレーニングフレームワークは、人名と擬似ラベルを共同で消化し、Cityscapes、CamVid、KITTIデータセット上で最高のパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2020-04-30T17:09:17Z) - Knowledge Distillation for Brain Tumor Segmentation [0.0]
本研究では,学習過程におけるモデルの性能とデータ量との関係について検討する。
追加データでトレーニングされた単一のモデルは、複数のモデルのアンサンブルに近いパフォーマンスを達成し、個々のメソッドより優れています。
論文 参考訳(メタデータ) (2020-02-10T12:44:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。