論文の概要: High-Level Synthetic Data Generation with Data Set Archetypes
- arxiv url: http://arxiv.org/abs/2303.14301v3
- Date: Sat, 21 Sep 2024 21:52:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 15:24:36.817118
- Title: High-Level Synthetic Data Generation with Data Set Archetypes
- Title(参考訳): データセットアーチタイプを用いた高レベル合成データ生成
- Authors: Michael J. Zellinger, Peter Bühlmann,
- Abstract要約: クラスタ分析は、異なるアルゴリズムの評価と比較に有効なベンチマークに依存している。
データセットのアーキタイプに基づく合成データ生成を提案する。
評価シナリオの言葉による記述からベンチマークを純粋に設定することが可能である。
- 参考スコア(独自算出の注目度): 4.13592995550836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cluster analysis relies on effective benchmarks for evaluating and comparing different algorithms. Simulation studies on synthetic data are popular because important features of the data sets, such as the overlap between clusters, or the variation in cluster shapes, can be effectively varied. Unfortunately, curating evaluation scenarios is often laborious, as practitioners must find lower-level geometric parameters (like cluster covariance matrices) to match a higher-level scenario description like "clusters with very different shapes." To make benchmarks more convenient and informative, we propose synthetic data generation based on data set archetypes. In this paradigm, the user describes an evaluation scenario in a high-level manner, and the software automatically generates data sets with the desired characteristics. Combining such data set archetypes with large language models (LLMs), it is possible to set up benchmarks purely from verbal descriptions of the evaluation scenarios. We provide an open-source Python package, repliclust, that implements this workflow. A demo of data generation from verbal inputs is available at https://demo.repliclust.org.
- Abstract(参考訳): クラスタ分析は、異なるアルゴリズムの評価と比較に有効なベンチマークに依存している。
クラスタ間の重なり合いやクラスタ形状の変化など,データセットの重要な特徴を効果的に変化させることができるため,合成データのシミュレーション研究が一般的である。
残念ながら、評価シナリオのキュレートは、"全く異なる形状のクラスタ"のような高レベルのシナリオ記述と一致するように、実践者は(クラスタ共分散行列のような)低レベルの幾何学的パラメータを見つけなければならないため、しばしば困難である。
ベンチマークをより便利かつ有益なものにするために,データセットのアーカイタイプに基づく合成データ生成を提案する。
このパラダイムでは、ユーザは高いレベルの評価シナリオを記述し、ソフトウェアは所望の特性を持つデータセットを自動的に生成する。
このようなデータセットのアーチタイプと大きな言語モデル(LLM)を組み合わせることで、評価シナリオの言語記述からベンチマークを純粋に設定することができる。
このワークフローを実装したオープンソースのPythonパッケージであるreliclustを提供しています。
音声入力からのデータ生成のデモはhttps://demo.repliclust.orgで公開されている。
関連論文リスト
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
大規模言語モデル(LLM)は多様なタスクに使われてきたが、特徴と対象変数の正確な相関は捉えていない。
そこで本研究では,LLMに基づく3つの重要な改良を加えて,実データの特徴クラス相関を正しく把握する手法を提案する。
実験の結果,本手法は下流タスクにおいて,20個のデータセット上で10個のSOTAベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-10-29T04:14:32Z) - EBES: Easy Benchmarking for Event Sequences [17.277513178760348]
イベントシーケンスは、ヘルスケア、ファイナンス、ユーザインタラクションログなど、さまざまな現実世界のドメインにおける一般的なデータ構造である。
時間データモデリング技術の進歩にもかかわらず、イベントシーケンスのパフォーマンスを評価するための標準ベンチマークは存在しない。
標準化された評価シナリオとプロトコルを備えた総合的なベンチマークツールであるEBESを紹介する。
論文 参考訳(メタデータ) (2024-10-04T13:03:43Z) - Spectral Clustering of Categorical and Mixed-type Data via Extra Graph
Nodes [0.0]
本稿では,数値情報と分類情報の両方をスペクトルクラスタリングアルゴリズムに組み込むための,より自然な方法について検討する。
データの属する可能性のある異なるカテゴリに対応する追加ノードの追加を提案し、それが解釈可能なクラスタリング対象関数に繋がることを示す。
この単純なフレームワークは、分類のみのデータに対する線形時間スペクトルクラスタリングアルゴリズムに繋がることを示す。
論文 参考訳(メタデータ) (2024-03-08T20:49:49Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerseは、データセットの特徴付けのための普遍的なフレームワークである。
infoVerseは、様々なモデル駆動メタ情報を統合することで、データセットの多次元特性をキャプチャする。
実世界の3つのアプリケーション(データプルーニング、アクティブラーニング、データアノテーション)において、infoVerse空間で選択されたサンプルは、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-30T18:12:48Z) - Which is the best model for my data? [0.0]
提案されたメタ学習アプローチは、機械学習に依存し、4つの主要なステップを含む。
本稿では,正と負の測度を含む集約測度値において,情報消去の問題に対処する62のメタ特徴の集合について述べる。
我々のメタ学習アプローチは、合成データセットの91%と実世界のデータセットの87%に対して、最適なモデルを正確に予測できることを示します。
論文 参考訳(メタデータ) (2022-10-26T13:15:43Z) - A framework for benchmarking clustering algorithms [2.900810893770134]
クラスタリングアルゴリズムは、さまざまなベンチマーク問題でテストできる。
多くの研究論文や大学院論文では、少数のデータセットしか考慮していない。
我々はクラスタリングアルゴリズムをテストする一貫した方法論を導入することを目的としたフレームワークを開発した。
論文 参考訳(メタデータ) (2022-09-20T06:10:41Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - GEMv2: Multilingual NLG Benchmarking in a Single Line of Code [161.1761414080574]
Generation, Evaluation, and Metrics Benchmarkは、データセット、モデル、メトリック開発者のためのモジュラーインフラストラクチャを提供する。
GEMv2は51言語で40のドキュメントデータセットをサポートする。
すべてのデータセットのモデルはオンラインで評価でき、インタラクティブなデータカード作成とレンダリングツールによって、生きたベンチマークに新しいデータセットを簡単に追加できます。
論文 参考訳(メタデータ) (2022-06-22T17:52:30Z) - Bellamy: Reusing Performance Models for Distributed Dataflow Jobs Across
Contexts [52.9168275057997]
本稿では、スケールアウト、データセットサイズ、ランタイムをデータフロージョブの記述的特性と組み合わせた新しいモデリング手法であるBelamyを提案する。
我々は,異なる環境で実行される各種データフロージョブの実行データからなる2つの公開データセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-07-29T11:57:38Z) - Synthetic Benchmarks for Scientific Research in Explainable Machine
Learning [14.172740234933215]
我々はXAI-Benchをリリースした。XAI-Benchは、合成データセットと、特徴属性アルゴリズムをベンチマークするためのライブラリである。
実世界のデータセットとは異なり、合成データセットは条件付き期待値の効率的な計算を可能にする。
いくつかの評価指標にまたがって一般的な説明可能性手法をベンチマークし、一般的な説明者にとっての障害モードを特定することで、ライブラリのパワーを実証する。
論文 参考訳(メタデータ) (2021-06-23T17:10:21Z) - Multi-layer Optimizations for End-to-End Data Analytics [71.05611866288196]
代替アプローチを実現するフレームワークであるIFAQ(Iterative Functional Aggregate Queries)を紹介する。
IFAQは、特徴抽出クエリと学習タスクを、IFAQのドメイン固有言語で与えられた1つのプログラムとして扱う。
IFAQ の Scala 実装が mlpack,Scikit,特殊化を数桁で上回り,線形回帰木モデルや回帰木モデルを複数の関係データセット上で処理可能であることを示す。
論文 参考訳(メタデータ) (2020-01-10T16:14:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。