High-Level Synthetic Data Generation with Data Set Archetypes
- URL: http://arxiv.org/abs/2303.14301v3
- Date: Sat, 21 Sep 2024 21:52:34 GMT
- Title: High-Level Synthetic Data Generation with Data Set Archetypes
- Authors: Michael J. Zellinger, Peter Bühlmann,
- Abstract summary: Cluster analysis relies on effective benchmarks for evaluating and comparing different algorithms.
We propose synthetic data generation based on data set archetypes.
It is possible to set up benchmarks purely from verbal descriptions of the evaluation scenarios.
- Score: 4.13592995550836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cluster analysis relies on effective benchmarks for evaluating and comparing different algorithms. Simulation studies on synthetic data are popular because important features of the data sets, such as the overlap between clusters, or the variation in cluster shapes, can be effectively varied. Unfortunately, curating evaluation scenarios is often laborious, as practitioners must find lower-level geometric parameters (like cluster covariance matrices) to match a higher-level scenario description like "clusters with very different shapes." To make benchmarks more convenient and informative, we propose synthetic data generation based on data set archetypes. In this paradigm, the user describes an evaluation scenario in a high-level manner, and the software automatically generates data sets with the desired characteristics. Combining such data set archetypes with large language models (LLMs), it is possible to set up benchmarks purely from verbal descriptions of the evaluation scenarios. We provide an open-source Python package, repliclust, that implements this workflow. A demo of data generation from verbal inputs is available at https://demo.repliclust.org.
Related papers
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - EBES: Easy Benchmarking for Event Sequences [17.277513178760348]
Event sequences are common data structures in various real-world domains such as healthcare, finance, and user interaction logs.
Despite advances in temporal data modeling techniques, there is no standardized benchmarks for evaluating their performance on event sequences.
We introduce EBES, a comprehensive benchmarking tool with standardized evaluation scenarios and protocols.
arXiv Detail & Related papers (2024-10-04T13:03:43Z) - Spectral Clustering of Categorical and Mixed-type Data via Extra Graph
Nodes [0.0]
This paper explores a more natural way to incorporate both numerical and categorical information into the spectral clustering algorithm.
We propose adding extra nodes corresponding to the different categories the data may belong to and show that it leads to an interpretable clustering objective function.
We demonstrate that this simple framework leads to a linear-time spectral clustering algorithm for categorical-only data.
arXiv Detail & Related papers (2024-03-08T20:49:49Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerse is a universal framework for dataset characterization.
infoVerse captures multidimensional characteristics of datasets by incorporating various model-driven meta-information.
In three real-world applications (data pruning, active learning, and data annotation), the samples chosen on infoVerse space consistently outperform strong baselines.
arXiv Detail & Related papers (2023-05-30T18:12:48Z) - Which is the best model for my data? [0.0]
The proposed meta-learning approach relies on machine learning and involves four major steps.
We present a collection of 62 meta-features that address the problem of information cancellation when aggregation measure values involving positive and negative measurements.
We show that our meta-learning approach can correctly predict an optimal model for 91% of the synthetic datasets and for 87% of the real-world datasets.
arXiv Detail & Related papers (2022-10-26T13:15:43Z) - A framework for benchmarking clustering algorithms [2.900810893770134]
Clustering algorithms can be tested on a variety of benchmark problems.
Many research papers and graduate theses consider only a small number of datasets.
We have developed a framework whose aim is to introduce a consistent methodology for testing clustering algorithms.
arXiv Detail & Related papers (2022-09-20T06:10:41Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - GEMv2: Multilingual NLG Benchmarking in a Single Line of Code [161.1761414080574]
Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers.
GEMv2 supports 40 documented datasets in 51 languages.
Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark.
arXiv Detail & Related papers (2022-06-22T17:52:30Z) - Bellamy: Reusing Performance Models for Distributed Dataflow Jobs Across
Contexts [52.9168275057997]
This paper presents Bellamy, a novel modeling approach that combines scale-outs, dataset sizes, and runtimes with additional descriptive properties of a dataflow job.
We evaluate our approach on two publicly available datasets consisting of execution data from various dataflow jobs carried out in different environments.
arXiv Detail & Related papers (2021-07-29T11:57:38Z) - Synthetic Benchmarks for Scientific Research in Explainable Machine
Learning [14.172740234933215]
We release XAI-Bench: a suite of synthetic datasets and a library for benchmarking feature attribution algorithms.
Unlike real-world datasets, synthetic datasets allow the efficient computation of conditional expected values.
We demonstrate the power of our library by benchmarking popular explainability techniques across several evaluation metrics and identifying failure modes for popular explainers.
arXiv Detail & Related papers (2021-06-23T17:10:21Z) - Multi-layer Optimizations for End-to-End Data Analytics [71.05611866288196]
We introduce Iterative Functional Aggregate Queries (IFAQ), a framework that realizes an alternative approach.
IFAQ treats the feature extraction query and the learning task as one program given in the IFAQ's domain-specific language.
We show that a Scala implementation of IFAQ can outperform mlpack, Scikit, and specialization by several orders of magnitude for linear regression and regression tree models over several relational datasets.
arXiv Detail & Related papers (2020-01-10T16:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.