Interpretable Deep Clustering for Tabular Data
- URL: http://arxiv.org/abs/2306.04785v2
- Date: Sun, 9 Jun 2024 08:40:00 GMT
- Title: Interpretable Deep Clustering for Tabular Data
- Authors: Jonathan Svirsky, Ofir Lindenbaum,
- Abstract summary: Clustering is a fundamental learning task widely used in data analysis.
We propose a new deep-learning framework that predicts interpretable cluster assignments at the instance and cluster levels.
We show that the proposed method can reliably predict cluster assignments in biological, text, image, and physics datasets.
- Score: 7.972599673048582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering is a fundamental learning task widely used as a first step in data analysis. For example, biologists use cluster assignments to analyze genome sequences, medical records, or images. Since downstream analysis is typically performed at the cluster level, practitioners seek reliable and interpretable clustering models. We propose a new deep-learning framework for general domain tabular data that predicts interpretable cluster assignments at the instance and cluster levels. First, we present a self-supervised procedure to identify the subset of the most informative features from each data point. Then, we design a model that predicts cluster assignments and a gate matrix that provides cluster-level feature selection. Overall, our model provides cluster assignments with an indication of the driving feature for each sample and each cluster. We show that the proposed method can reliably predict cluster assignments in biological, text, image, and physics tabular datasets. Furthermore, using previously proposed metrics, we verify that our model leads to interpretable results at a sample and cluster level. Our code is available at https://github.com/jsvir/idc.
Related papers
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Using Decision Trees for Interpretable Supervised Clustering [0.0]
supervised clustering aims at forming clusters of labelled data with high probability densities.
We are particularly interested in finding clusters of data of a given class and describing the clusters with the set of comprehensive rules.
arXiv Detail & Related papers (2023-07-16T17:12:45Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - A Generalized Framework for Predictive Clustering and Optimization [18.06697544912383]
Clustering is a powerful and extensively used data science tool.
In this article, we define a generalized optimization framework for predictive clustering.
We also present a joint optimization strategy that exploits mixed-integer linear programming (MILP) for global optimization.
arXiv Detail & Related papers (2023-05-07T19:56:51Z) - ClusterNet: A Perception-Based Clustering Model for Scattered Data [16.326062082938215]
Cluster separation in scatterplots is a task that is typically tackled by widely used clustering techniques.
We propose a learning strategy which directly operates on scattered data.
We train ClusterNet, a point-based deep learning model, trained to reflect human perception of cluster separability.
arXiv Detail & Related papers (2023-04-27T13:41:12Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDEC is an unsupervised framework for joint statistical representation learning and clustering.
Our experiments show that using these representations, one can considerably improve results on imbalanced image clustering across a variety of image datasets.
arXiv Detail & Related papers (2021-09-11T09:26:52Z) - UCSL : A Machine Learning Expectation-Maximization framework for
Unsupervised Clustering driven by Supervised Learning [2.133032470368051]
Subtype Discovery consists in finding interpretable and consistent sub-parts of a dataset, which are also relevant to a certain supervised task.
We propose a general Expectation-Maximization ensemble framework entitled UCSL (Unsupervised Clustering driven by Supervised Learning)
Our method is generic, it can integrate any clustering method and can be driven by both binary classification and regression.
arXiv Detail & Related papers (2021-07-05T12:55:13Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.