論文の概要: Heat flux for semi-local machine-learning potentials
- arxiv url: http://arxiv.org/abs/2303.14434v1
- Date: Sat, 25 Mar 2023 10:57:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 19:42:37.788962
- Title: Heat flux for semi-local machine-learning potentials
- Title(参考訳): 半局所機械学習ポテンシャルに対する熱流束
- Authors: Marcel F. Langer, Florian Knoop, Christian Carbogno, Matthias
Scheffler and Matthias Rupp
- Abstract要約: グリーン・クボ法(GK法)は材料中の熱輸送シミュレーションのための厳密な枠組みである。
機械学習のポテンシャルは、第一原理シミュレーションの精度を達成でき、シミュレーション時間と長さのスケールをはるかに越えることができる。
計算効率を損なうことなく, 自動微分による適応型熱流束定式化を導出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Green-Kubo (GK) method is a rigorous framework for heat transport
simulations in materials. However, it requires an accurate description of the
potential-energy surface and carefully converged statistics. Machine-learning
potentials can achieve the accuracy of first-principles simulations while
allowing to reach well beyond their simulation time and length scales at a
fraction of the cost. In this paper, we explain how to apply the GK approach to
the recent class of message-passing machine-learning potentials, which
iteratively consider semi-local interactions beyond the initial interaction
cutoff. We derive an adapted heat flux formulation that can be implemented
using automatic differentiation without compromising computational efficiency.
The approach is demonstrated and validated by calculating the thermal
conductivity of zirconium dioxide across temperatures.
- Abstract(参考訳): green-kubo (gk) 法は材料の熱輸送シミュレーションのための厳密な枠組みである。
しかし、ポテンシャルエネルギー曲面の正確な記述と注意深く収束した統計が必要である。
機械学習のポテンシャルは、第一原理シミュレーションの精度を達成でき、シミュレーション時間と長さのスケールをほんの少しのコストではるかに超えることができる。
本稿では、GKアプローチを最近のメッセージパス機械学習ポテンシャルのクラスに適用する方法を説明し、これは、初期相互作用遮断以上の半局所的相互作用を反復的に考慮している。
計算効率を損なうことなく、自動微分を用いて実装可能な適応熱流束定式化を導出する。
この手法は, ジルコニウムの熱伝導率を温度で計算することによって実証し, 検証した。
関連論文リスト
- Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
超イオン材料は、エネルギー密度と安全性を向上させる固体電池の推進に不可欠である。
このような物質を同定するための従来の計算手法は資源集約的であり、容易ではない。
普遍的原子間ポテンシャル解析によるイオン伝導率の迅速かつ確実な評価手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T09:01:36Z) - Efficient mapping of phase diagrams with conditional Boltzmann Generators [4.437335677401287]
位相図全体に対するボルツマン生成法に基づく深層生成機械学習モデルを開発した。
単一正規化流を訓練することにより, 単一の基準熱力学状態から広範囲の目標温度, 圧力に比例した平衡分布を変換し, 効率よく平衡分布を生成することができる。
我々は、レナード=ジョーンズ系の固液共存線を最先端自由エネルギー法とよく一致して予測することで、我々のアプローチを実証する。
論文 参考訳(メタデータ) (2024-06-18T08:05:04Z) - A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains [33.7054351451505]
偏微分方程式(PDE)によって支配される力学を予測できる新しい有限要素に基づく物理演算子学習フレームワークを提案する。
提案した演算子学習フレームワークは、現在の時間ステップで温度場を入力として、次の時間ステップで温度場を予測する。
ネットワークは、FEM溶液と比較して、任意の初期温度場の時間的変化を高精度に予測することに成功した。
論文 参考訳(メタデータ) (2024-05-21T02:41:40Z) - Accurate melting point prediction through autonomous physics-informed
learning [52.217497897835344]
NPTアンサンブルにおける共存シミュレーションから自律的に学習することで融点を計算するアルゴリズムを提案する。
固液共存進化の物理モデルを統合することで、アルゴリズムの精度が向上し、最適な意思決定が可能になることを実証する。
論文 参考訳(メタデータ) (2023-06-23T07:53:09Z) - Stress and heat flux via automatic differentiation [0.0]
機械学習ポテンシャルはボルン・オッペンハイマーポテンシャルエネルギー表面の効率的な近似を提供する。
最近のポテンシャルは高いボディオーダーを特徴とし、メッセージパッシング機構による同変半局所相互作用を含むことができる。
本研究は, 力, 応力, 熱フラックスを得るための統一ADアプローチを示し, モデルに依存しない実装を提供する。
論文 参考訳(メタデータ) (2023-05-02T13:20:35Z) - Critical behavior of Ising model by preparing thermal state on quantum
computer [3.570760625392093]
量子コンピューティング技術を用いて調製した熱状態を利用して,Isingモデルの臨界挙動をシミュレートする。
我々は、長距離相互作用型Isingモデルの比熱と感受性を計算し、Ising臨界度を小さな格子サイズで観測する。
論文 参考訳(メタデータ) (2023-02-28T03:29:19Z) - Physics-based Learning of Parameterized Thermodynamics from Real-time
Thermography [0.0]
実時間サーモグラフィデータから熱過程のダイナミクスを学習するための物理に基づく新しいアプローチを提案する。
提案手法は雑音に対して頑健であり,パラメータ推定の精度向上に有効であることを示す。
論文 参考訳(メタデータ) (2022-03-24T16:06:31Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
奇数パリティ部分空間の適切な包含は、中間温度範囲における最大忠実度感受性の向上につながることを示す。
正しい低温の挙動は、2つの最も低い多体エネルギー固有状態を含む近似によって捉えられる。
論文 参考訳(メタデータ) (2021-05-11T14:08:02Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
捕捉イオンを用いた最適なフォノン温度推定のための断熱法を提案する。
フォノンの熱分布に関する関連する情報は、スピンの集合的な自由度に伝達することができる。
それぞれの熱状態確率は、各スピン励起構成に近似的にマッピングされることを示す。
論文 参考訳(メタデータ) (2020-12-16T12:58:08Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
我々は,実世界の量子システムの振舞いをシミュレーションする資源として,キュービットデコヒーレンスを活用することを目指している。
熱緩和を行うための3つの方法を提案する。
結果,実験データ,理論的予測との間には,良好な一致が得られた。
論文 参考訳(メタデータ) (2020-01-03T11:48:11Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。