論文の概要: Excited-state nonadiabatic dynamics in explicit solvent using machine learned interatomic potentials
- arxiv url: http://arxiv.org/abs/2501.16974v1
- Date: Tue, 28 Jan 2025 14:14:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 22:09:11.169226
- Title: Excited-state nonadiabatic dynamics in explicit solvent using machine learned interatomic potentials
- Title(参考訳): 機械学習原子間ポテンシャルを用いた露光溶媒中の励起状態非断熱動力学
- Authors: Maximilian X. Tiefenbacher, Brigitta Bachmair, Cheng Giuseppe Chen, Julia Westermayr, Philipp Marquetand, Johannes C. B. Dietschreit, Leticia González,
- Abstract要約: 我々はFieldSchNetを用いてQM/MM静電埋め込みを、非断熱励起状態軌跡のML/MMに置き換える。
ML/MMモデルはQM/MM表面ホッピング参照シミュレーションの電子動力学と構造再構成を再現することを示した。
- 参考スコア(独自算出の注目度): 0.602276990341246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Excited-state nonadiabatic simulations with quantum mechanics/molecular mechanics (QM/MM) are essential to understand photoinduced processes in explicit environments. However, the high computational cost of the underlying quantum chemical calculations limits its application in combination with trajectory surface hopping methods. Here, we use FieldSchNet, a machine-learned interatomic potential capable of incorporating electric field effects into the electronic states, to replace traditional QM/MM electrostatic embedding with its ML/MM counterpart for nonadiabatic excited state trajectories. The developed method is applied to furan in water, including five coupled singlet states. Our results demonstrate that with sufficiently curated training data, the ML/MM model reproduces the electronic kinetics and structural rearrangements of QM/MM surface hopping reference simulations. Furthermore, we identify performance metrics that provide robust and interpretable validation of model accuracy.
- Abstract(参考訳): 量子力学/分子力学(QM/MM)を用いた励起状態非線形シミュレーションは、明示的な環境下での光誘起過程を理解するのに不可欠である。
しかし、基礎となる量子化学計算の計算コストが高いため、軌道面ホッピング法と組み合わせて応用は制限される。
ここでは、電界効果を電子状態に組み込むことができる機械学習型原子間ポテンシャルであるFieldSchNetを用いて、従来のQM/MM静電埋め込みを非断熱励起状態軌跡のML/MMに置き換える。
本発明の方法は5つの結合した一重項状態を含む水中のフランに適用される。
この結果から, ML/MMモデルでは, 十分に訓練されたトレーニングデータにより, QM/MM表面ホッピング参照シミュレーションの電子動力学および構造的再構成を再現できることが示唆された。
さらに、モデル精度の堅牢かつ解釈可能な検証を提供する性能指標を同定する。
関連論文リスト
- Machine learning surrogate models of many-body dispersion interactions in polymer melts [40.83978401377059]
本稿では,高分子融液中のMBD力を予測するための機械学習サロゲートモデルを提案する。
我々のモデルは、最も関連する原子結合を選択的に保持する、トリミングされたSchNetアーキテクチャに基づいている。
高計算効率で特徴付けられるサロゲートモデルにより、大規模な分子シミュレーションにMBD効果を実践的に組み込むことが可能となる。
論文 参考訳(メタデータ) (2025-03-19T12:15:35Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
金標準CCSD(T)計算をトレーニングデータとして,有機分子の電子構造を統一した機械学習手法を開発した。
炭化水素分子を用いたモデルでは, 計算コストと様々な量子化学特性の予測精度において, 広範に用いられているハイブリッド関数と二重ハイブリッド関数でDFTより優れていた。
論文 参考訳(メタデータ) (2024-05-09T19:51:27Z) - BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development [11.682763325188525]
本稿では,分子動力学(MD)シミュレーションのための新しいフレームワークであるBAMBOOを紹介し,リチウム電池用液体電解質の文脈でその能力を実証する。
BamBOOは密度、粘性、イオン伝導率などの主要な電解質特性を予測するための最先端の精度を示す。
この研究は、一般的な有機液体の性質をシミュレートできる「ユニバーサルMLFF」への道を開くことを目的としている。
論文 参考訳(メタデータ) (2024-04-10T17:31:49Z) - Quantum Algorithms for Simulating Nuclear Effective Field Theories [40.83664249192338]
我々は、最先端のハミルトンシミュレーション法を用いて、核物理学の低エネルギー有効場理論(EFT)をシミュレートするために、量子ビットとゲートコストを推定する。
シミュレーションアルゴリズムにより, 低エネルギーのハミルトニアンの対称性を用いて, より厳密な誤差境界が得られることを示す。
論文 参考訳(メタデータ) (2023-12-08T20:09:28Z) - Electronic excited states from physically-constrained machine learning [0.0]
本稿では,実効ハミルトニアンの対称性適応MLモデルをトレーニングし,量子力学計算から電子励起を再現する統合モデリング手法を提案する。
結果として得られるモデルは、トレーニングされた分子よりもずっと大きく、より複雑な分子を予測できる。
論文 参考訳(メタデータ) (2023-11-01T20:49:59Z) - Equation-of-motion variational quantum eigensolver method for computing
molecular excitation energies, ionization potentials, and electron affinities [4.21608910266125]
短期量子コンピュータは正確な分子シミュレーションを通じて物質と化学の研究を促進することが期待されている。
本稿では,変分量子固有解法に従って励起エネルギーを計算するための運動方程式に基づく手法を提案する。
論文 参考訳(メタデータ) (2022-06-21T16:21:04Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Multi-task learning for electronic structure to predict and explore
molecular potential energy surfaces [39.228041052681526]
我々はOrbNetモデルを洗練し、分子のエネルギー、力、その他の応答特性を正確に予測する。
このモデルは、すべての電子構造項に対する解析的勾配の導出により、エンドツーエンドで微分可能である。
ドメイン固有の特徴を用いることにより、化学空間をまたいで移動可能であることが示されている。
論文 参考訳(メタデータ) (2020-11-05T06:48:46Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z) - OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
Atomic-Orbital Features [42.96944345045462]
textscOrbNetは、学習効率と転送可能性の観点から、既存のメソッドよりも優れています。
薬物のような分子のデータセットに応用するために、textscOrbNetは1000倍以上の計算コストでDFTの化学的精度でエネルギーを予測する。
論文 参考訳(メタデータ) (2020-07-15T22:38:41Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
機械学習(ML)ベースのポテンシャルは、量子力学(QM)計算の忠実なエミュレーションを、計算コストを大幅に削減することを目的としている。
アクティブラーニング(AL)の原理を用いたデータセット構築のための高度に自動化されたアプローチを提案する。
アルミニウム(ANI-Al)のMLポテンシャル構築によるこのアプローチの実証
転写性を示すために、1.3M原子衝撃シミュレーションを行い、非平衡力学から採取した局所原子環境上でのDFT計算とANI-Al予測がよく一致することを示す。
論文 参考訳(メタデータ) (2020-03-10T19:06:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。