Analyzing Effects of Mixed Sample Data Augmentation on Model
Interpretability
- URL: http://arxiv.org/abs/2303.14608v1
- Date: Sun, 26 Mar 2023 03:01:39 GMT
- Title: Analyzing Effects of Mixed Sample Data Augmentation on Model
Interpretability
- Authors: Soyoun Won, Sung-Ho Bae, Seong Tae Kim
- Abstract summary: We explore the relationship between interpretability and data augmentation strategy in which models are trained.
Experiments show that models trained with mixed sample data augmentation show lower interpretability.
- Score: 15.078314022161237
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data augmentation strategies are actively used when training deep neural
networks (DNNs). Recent studies suggest that they are effective at various
tasks. However, the effect of data augmentation on DNNs' interpretability is
not yet widely investigated. In this paper, we explore the relationship between
interpretability and data augmentation strategy in which models are trained
with different data augmentation methods and are evaluated in terms of
interpretability. To quantify the interpretability, we devise three evaluation
methods based on alignment with humans, faithfulness to the model, and the
number of human-recognizable concepts in the model. Comprehensive experiments
show that models trained with mixed sample data augmentation show lower
interpretability, especially for CutMix and SaliencyMix augmentations. This new
finding suggests that it is important to carefully adopt mixed sample data
augmentation due to the impact on model interpretability, especially in
mission-critical applications.
Related papers
- Increasing Interpretability of Neural Networks By Approximating Human Visual Saliency [4.061099610106136]
Recent advances have shown that guiding models to human-defined regions of saliency within individual images significantly increases performance and interpretability.
We propose a combination strategy of saliency incorporation and active learning to reduce the human annotation data required by 80% while maintaining the interpretability and performance increase from human saliency.
arXiv Detail & Related papers (2024-10-21T15:42:27Z) - LMD3: Language Model Data Density Dependence [78.76731603461832]
We develop a methodology for analyzing language model task performance at the individual example level based on training data density estimation.
Experiments with paraphrasing as a controlled intervention on finetuning data demonstrate that increasing the support in the training distribution for specific test queries results in a measurable increase in density.
We conclude that our framework can provide statistical evidence of the dependence of a target model's predictions on subsets of its training data.
arXiv Detail & Related papers (2024-05-10T09:03:27Z) - The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes [30.30769701138665]
We introduce and explore the Mirrored Influence Hypothesis, highlighting a reciprocal nature of influence between training and test data.
Specifically, it suggests that evaluating the influence of training data on test predictions can be reformulated as an equivalent, yet inverse problem.
We introduce a new method for estimating the influence of training data, which requires calculating gradients for specific test samples, paired with a forward pass for each training point.
arXiv Detail & Related papers (2024-02-14T03:43:05Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Measuring and Improving Attentiveness to Partial Inputs with Counterfactuals [91.59906995214209]
We propose a new evaluation method, Counterfactual Attentiveness Test (CAT)
CAT uses counterfactuals by replacing part of the input with its counterpart from a different example, expecting an attentive model to change its prediction.
We show that GPT3 becomes less attentive with an increased number of demonstrations, while its accuracy on the test data improves.
arXiv Detail & Related papers (2023-11-16T06:27:35Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
We introduce a novel method with a variable decorrelation regularizer to handle both linear and nonlinear confounding.
We employ association rules as new representations using association rule mining based on the original features to increase model interpretability.
arXiv Detail & Related papers (2022-09-29T17:44:14Z) - Improving Prediction of Cognitive Performance using Deep Neural Networks
in Sparse Data [2.867517731896504]
We used data from an observational, cohort study, Midlife in the United States (MIDUS) to model executive function and episodic memory measures.
Deep neural network (DNN) models consistently ranked highest in all of the cognitive performance prediction tasks.
arXiv Detail & Related papers (2021-12-28T22:23:08Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
influence tuning can help deconfounding the model from spurious patterns in data.
We show that in a controlled setup, influence tuning can help deconfounding the model from spurious patterns in data.
arXiv Detail & Related papers (2021-10-07T06:59:46Z) - Evaluating the Interpretability of Generative Models by Interactive
Reconstruction [30.441247705313575]
We introduce a task to quantify the human-interpretability of generative model representations.
We find performance on this task much more reliably differentiates entangled and disentangled models than baseline approaches.
arXiv Detail & Related papers (2021-02-02T02:38:14Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.