The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes
- URL: http://arxiv.org/abs/2402.08922v2
- Date: Wed, 19 Jun 2024 15:35:04 GMT
- Title: The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes
- Authors: Myeongseob Ko, Feiyang Kang, Weiyan Shi, Ming Jin, Zhou Yu, Ruoxi Jia,
- Abstract summary: We introduce and explore the Mirrored Influence Hypothesis, highlighting a reciprocal nature of influence between training and test data.
Specifically, it suggests that evaluating the influence of training data on test predictions can be reformulated as an equivalent, yet inverse problem.
We introduce a new method for estimating the influence of training data, which requires calculating gradients for specific test samples, paired with a forward pass for each training point.
- Score: 30.30769701138665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale black-box models have become ubiquitous across numerous applications. Understanding the influence of individual training data sources on predictions made by these models is crucial for improving their trustworthiness. Current influence estimation techniques involve computing gradients for every training point or repeated training on different subsets. These approaches face obvious computational challenges when scaled up to large datasets and models. In this paper, we introduce and explore the Mirrored Influence Hypothesis, highlighting a reciprocal nature of influence between training and test data. Specifically, it suggests that evaluating the influence of training data on test predictions can be reformulated as an equivalent, yet inverse problem: assessing how the predictions for training samples would be altered if the model were trained on specific test samples. Through both empirical and theoretical validations, we demonstrate the wide applicability of our hypothesis. Inspired by this, we introduce a new method for estimating the influence of training data, which requires calculating gradients for specific test samples, paired with a forward pass for each training point. This approach can capitalize on the common asymmetry in scenarios where the number of test samples under concurrent examination is much smaller than the scale of the training dataset, thus gaining a significant improvement in efficiency compared to existing approaches. We demonstrate the applicability of our method across a range of scenarios, including data attribution in diffusion models, data leakage detection, analysis of memorization, mislabeled data detection, and tracing behavior in language models. Our code will be made available at https://github.com/ruoxi-jia-group/Forward-INF.
Related papers
- Outlier Gradient Analysis: Efficiently Identifying Detrimental Training Samples for Deep Learning Models [36.05242956018461]
In this paper, we establish a bridge between identifying detrimental training samples via influence functions and outlier gradient detection.
We first validate the hypothesis of our proposed outlier gradient analysis approach on synthetic datasets.
We then demonstrate its effectiveness in detecting mislabeled samples in vision models and selecting data samples for improving performance of natural language processing transformer models.
arXiv Detail & Related papers (2024-05-06T21:34:46Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Provable Detection of Propagating Sampling Bias in Prediction Models [1.7709344190822935]
We provide a theoretical analysis of how a specific form of data bias, differential sampling bias, propagates from the data stage to the prediction stage.
Under reasonable assumptions, we quantify how the amount of bias in the model predictions varies as a function of the amount of differential sampling bias in the data.
We demonstrate that the theoretical results hold in practice even when our assumptions are relaxed.
arXiv Detail & Related papers (2023-02-13T23:39:35Z) - Conformal prediction for the design problem [72.14982816083297]
In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next.
In such settings, there is a distinct type of distribution shift between the training and test data.
We introduce a method to quantify predictive uncertainty in such settings.
arXiv Detail & Related papers (2022-02-08T02:59:12Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Managing dataset shift by adversarial validation for credit scoring [5.560471251954645]
The inconsistency between the distribution of training data and the data that actually needs to be predicted is likely to cause poor model performance.
We propose a method based on adversarial validation to alleviate the dataset shift problem in credit scoring scenarios.
arXiv Detail & Related papers (2021-12-19T07:07:15Z) - Efficient Estimation of Influence of a Training Instance [56.29080605123304]
We propose an efficient method for estimating the influence of a training instance on a neural network model.
Our method is inspired by dropout, which zero-masks a sub-network and prevents the sub-network from learning each training instance.
We demonstrate that the proposed method can capture training influences, enhance the interpretability of error predictions, and cleanse the training dataset for improving generalization.
arXiv Detail & Related papers (2020-12-08T04:31:38Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.