論文の概要: PDPP:Projected Diffusion for Procedure Planning in Instructional Videos
- arxiv url: http://arxiv.org/abs/2303.14676v2
- Date: Sun, 23 Jul 2023 09:41:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 23:34:04.873950
- Title: PDPP:Projected Diffusion for Procedure Planning in Instructional Videos
- Title(参考訳): PDPP:教育ビデオにおけるプロシージャ計画のための拡散計画
- Authors: Hanlin Wang, Yilu Wu, Sheng Guo, Limin Wang
- Abstract要約: 授業ビデオにおけるプロシージャプランニングの問題について検討する。
この問題は、非構造化の実生活ビデオの現在の視覚的観察から、ゴール指向のプランを作成することを目的としている。
- 参考スコア(独自算出の注目度): 30.637651835289635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of procedure planning in instructional
videos, which aims to make goal-directed plans given the current visual
observations in unstructured real-life videos. Previous works cast this problem
as a sequence planning problem and leverage either heavy intermediate visual
observations or natural language instructions as supervision, resulting in
complex learning schemes and expensive annotation costs. In contrast, we treat
this problem as a distribution fitting problem. In this sense, we model the
whole intermediate action sequence distribution with a diffusion model (PDPP),
and thus transform the planning problem to a sampling process from this
distribution. In addition, we remove the expensive intermediate supervision,
and simply use task labels from instructional videos as supervision instead.
Our model is a U-Net based diffusion model, which directly samples action
sequences from the learned distribution with the given start and end
observations. Furthermore, we apply an efficient projection method to provide
accurate conditional guides for our model during the learning and sampling
process. Experiments on three datasets with different scales show that our PDPP
model can achieve the state-of-the-art performance on multiple metrics, even
without the task supervision. Code and trained models are available at
https://github.com/MCG-NJU/PDPP.
- Abstract(参考訳): 本稿では,非構造化映像における現状の視覚的観察から目標指向の計画を作成することを目的とした,指導ビデオにおける手順計画の問題について検討する。
以前の研究は、この問題をシーケンス計画問題として位置づけ、重い中間視覚観察または自然言語指示を監督として活用し、複雑な学習スキームと高価なアノテーションコストを生み出した。
対照的に,この問題は分布適合問題として扱われる。
この意味では, 拡散モデル(pdpp)を用いて, 中間動作列分布全体をモデル化し, この分布から計画問題をサンプリングプロセスに変換する。
さらに,コストのかかる中間監督を除去し,代わりに指導ビデオからのタスクラベルを監督として使用する。
我々のモデルはU-Netに基づく拡散モデルであり、学習した分布からのアクションシーケンスを与えられた開始と終了の観測で直接サンプリングする。
さらに,学習およびサンプリング過程において,モデルに対して正確な条件付きガイドを提供するための効率的なプロジェクション手法を適用した。
異なるスケールの3つのデータセットで実験したところ、PDPPモデルはタスクの監督なしに複数のメトリクスで最先端のパフォーマンスを達成できることがわかった。
コードとトレーニングされたモデルはhttps://github.com/MCG-NJU/PDPPで入手できる。
関連論文リスト
- Hindsight Planner: A Closed-Loop Few-Shot Planner for Embodied Instruction Following [62.10809033451526]
本研究は,Large Language Models (LLM) を用いた Embodied Instruction following (EIF) タスクプランナの構築に焦点をあてる。
我々は,このタスクを部分観測可能なマルコフ決定プロセス (POMDP) として構成し,数発の仮定で頑健なプランナーの開発を目指す。
ALFREDデータセットに対する我々の実験は、プランナーが数ショットの仮定で競争性能を達成することを示す。
論文 参考訳(メタデータ) (2024-12-27T10:05:45Z) - ActionDiffusion: An Action-aware Diffusion Model for Procedure Planning in Instructional Videos [10.180115984765582]
ActionDiffusionは、講義ビデオにおけるプロシージャ計画のための新しい拡散モデルである。
本手法は,行動間の時間的依存関係の学習と拡散過程における行動計画の認知を統一する。
論文 参考訳(メタデータ) (2024-03-13T14:54:04Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Refining Diffusion Planner for Reliable Behavior Synthesis by Automatic
Detection of Infeasible Plans [25.326624139426514]
拡散に基づくプランニングは、長期のスパースリワードタスクにおいて有望な結果を示している。
しかし、生成モデルとしての性質のため、拡散モデルは実現可能な計画を生成することが保証されない。
本稿では,拡散モデルが生成する信頼できない計画を改善するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T10:35:42Z) - Compositional Foundation Models for Hierarchical Planning [52.18904315515153]
本稿では,言語,視覚,行動データを個別に訓練し,長期的課題を解決するための基礎モデルを提案する。
我々は,大規模なビデオ拡散モデルを用いて,環境に根ざした記号的計画を構築するために,大規模言語モデルを用いている。
生成したビデオプランは、生成したビデオからアクションを推論する逆ダイナミクスモデルを通じて、視覚運動制御に基礎を置いている。
論文 参考訳(メタデータ) (2023-09-15T17:44:05Z) - Ensemble Modeling for Multimodal Visual Action Recognition [50.38638300332429]
マルチモーダル動作認識のためのアンサンブルモデリング手法を提案する。
我々は,MECCANO[21]データセットの長期分布を処理するために,焦点損失の変種を用いて,個別のモダリティモデルを個別に訓練する。
論文 参考訳(メタデータ) (2023-08-10T08:43:20Z) - Position Paper: Online Modeling for Offline Planning [2.8326418377665346]
AI計画研究の重要な部分はアクションモデルの表現である。
この分野の成熟にもかかわらず、AI計画技術は研究コミュニティの外ではめったに使われない。
これは、モデリングプロセスが計画プロセスの前に行われ、完了したと仮定されているためである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-07T14:48:08Z) - P3IV: Probabilistic Procedure Planning from Instructional Videos with
Weak Supervision [31.73732506824829]
授業ビデオにおけるプロシージャプランニングの問題について検討する。
ここでは、エージェントは、与えられたスタートから望ましいゴール状態へ環境を変換できる、もっともらしい一連のアクションを生成しなければならない。
自然言語の指示から学習することで,弱い教師付きアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-04T19:37:32Z) - Visual Learning-based Planning for Continuous High-Dimensional POMDPs [81.16442127503517]
Visual Tree Search (VTS)は、オフラインで学習した生成モデルとオンラインモデルベースのPOMDP計画を組み合わせた学習と計画の手順である。
VTSは、モンテカルロの木探索プランナーにおける画像観測の可能性を予測し評価するために、一連の深部生成観測モデルを利用することで、オフラインモデルトレーニングとオンラインプランニングを橋渡しする。
VTSは、異なる観測ノイズに対して堅牢であり、オンラインのモデルベースプランニングを利用するため、再トレーニングを必要とせずに、異なる報酬構造に適応できることを示す。
論文 参考訳(メタデータ) (2021-12-17T11:53:31Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
我々は、モデル予測制御(MPC)と学習モデルとモデルフリーポリシー学習を組み合わせたハイブリッドアプローチを採っている。
モデルフリーエージェントは高いDoF制御問題においても強いベースラインであることがわかった。
モデルに基づくプランナを,パフォーマンスを損なうことなく,計画が損なわれるようなポリシーに置き換えることが可能であることを示す。
論文 参考訳(メタデータ) (2021-10-07T12:00:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。