Coupling Artificial Neurons in BERT and Biological Neurons in the Human
Brain
- URL: http://arxiv.org/abs/2303.14871v1
- Date: Mon, 27 Mar 2023 01:41:48 GMT
- Title: Coupling Artificial Neurons in BERT and Biological Neurons in the Human
Brain
- Authors: Xu Liu, Mengyue Zhou, Gaosheng Shi, Yu Du, Lin Zhao, Zihao Wu, David
Liu, Tianming Liu, Xintao Hu
- Abstract summary: This study introduces a novel, general, and effective framework to link transformer-based NLP models and neural activities in response to language.
Our experimental results demonstrate 1) The activations of ANs and BNs are significantly synchronized; 2) the ANs carry meaningful linguistic/semantic information and anchor to their BN signatures; 3) the anchored BNs are interpretable in a neurolinguistic context.
- Score: 9.916033214833407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Linking computational natural language processing (NLP) models and neural
responses to language in the human brain on the one hand facilitates the effort
towards disentangling the neural representations underpinning language
perception, on the other hand provides neurolinguistics evidence to evaluate
and improve NLP models. Mappings of an NLP model's representations of and the
brain activities evoked by linguistic input are typically deployed to reveal
this symbiosis. However, two critical problems limit its advancement: 1) The
model's representations (artificial neurons, ANs) rely on layer-level
embeddings and thus lack fine-granularity; 2) The brain activities (biological
neurons, BNs) are limited to neural recordings of isolated cortical unit (i.e.,
voxel/region) and thus lack integrations and interactions among brain
functions. To address those problems, in this study, we 1) define ANs with
fine-granularity in transformer-based NLP models (BERT in this study) and
measure their temporal activations to input text sequences; 2) define BNs as
functional brain networks (FBNs) extracted from functional magnetic resonance
imaging (fMRI) data to capture functional interactions in the brain; 3) couple
ANs and BNs by maximizing the synchronization of their temporal activations.
Our experimental results demonstrate 1) The activations of ANs and BNs are
significantly synchronized; 2) the ANs carry meaningful linguistic/semantic
information and anchor to their BN signatures; 3) the anchored BNs are
interpretable in a neurolinguistic context. Overall, our study introduces a
novel, general, and effective framework to link transformer-based NLP models
and neural activities in response to language and may provide novel insights
for future studies such as brain-inspired evaluation and development of NLP
models.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Unveiling Language Competence Neurons: A Psycholinguistic Approach to Model Interpretability [2.672177830116334]
This study employs psycholinguistic paradigms to explore neuron-level representations in language model across three tasks.
Our findings indicate that while GPT-2-XL struggles with the sound-shape task, it demonstrates human-like abilities in both sound-gender association and implicit causality.
arXiv Detail & Related papers (2024-09-24T07:40:33Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores.
We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels.
Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus.
arXiv Detail & Related papers (2024-07-15T01:09:08Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Sharing Matters: Analysing Neurons Across Languages and Tasks in LLMs [70.3132264719438]
We aim to fill the research gap by examining how neuron activation is shared across tasks and languages.
We classify neurons into four distinct categories based on their responses to a specific input across different languages.
Our analysis reveals the following insights: (i) the patterns of neuron sharing are significantly affected by the characteristics of tasks and examples; (ii) neuron sharing does not fully correspond with language similarity; (iii) shared neurons play a vital role in generating responses, especially those shared across all languages.
arXiv Detail & Related papers (2024-06-13T16:04:11Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - Coupling Visual Semantics of Artificial Neural Networks and Human Brain
Function via Synchronized Activations [13.956089436100106]
We propose a novel computational framework, Synchronized Activations (Sync-ACT) to couple the visual representation spaces and semantics between ANNs and BNNs.
With this approach, we are able to semantically annotate the neurons in ANNs with biologically meaningful description derived from human brain imaging.
arXiv Detail & Related papers (2022-06-22T03:32:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.