Towards Unified Neural Decoding with Brain Functional Network Modeling
- URL: http://arxiv.org/abs/2506.12055v1
- Date: Fri, 30 May 2025 12:10:37 GMT
- Title: Towards Unified Neural Decoding with Brain Functional Network Modeling
- Authors: Di Wu, Linghao Bu, Yifei Jia, Lu Cao, Siyuan Li, Siyu Chen, Yueqian Zhou, Sheng Fan, Wenjie Ren, Dengchang Wu, Kang Wang, Yue Zhang, Yuehui Ma, Jie Yang, Mohamad Sawan,
- Abstract summary: We present Multi-individual Brain Region-Aggregated Network (MIBRAIN), a neural decoding framework.<n>MIBRAIN constructs a whole functional brain network model by integrating intracranial neurophysiological recordings across multiple individuals.<n>Our framework paves the way for robust neural decoding across individuals and offers insights for practical clinical applications.
- Score: 34.13766828046489
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent achievements in implantable brain-computer interfaces (iBCIs) have demonstrated the potential to decode cognitive and motor behaviors with intracranial brain recordings; however, individual physiological and electrode implantation heterogeneities have constrained current approaches to neural decoding within single individuals, rendering interindividual neural decoding elusive. Here, we present Multi-individual Brain Region-Aggregated Network (MIBRAIN), a neural decoding framework that constructs a whole functional brain network model by integrating intracranial neurophysiological recordings across multiple individuals. MIBRAIN leverages self-supervised learning to derive generalized neural prototypes and supports group-level analysis of brain-region interactions and inter-subject neural synchrony. To validate our framework, we recorded stereoelectroencephalography (sEEG) signals from a cohort of individuals performing Mandarin syllable articulation. Both real-time online and offline decoding experiments demonstrated significant improvements in both audible and silent articulation decoding, enhanced decoding accuracy with increased multi-subject data integration, and effective generalization to unseen subjects. Furthermore, neural predictions for regions without direct electrode coverage were validated against authentic neural data. Overall, this framework paves the way for robust neural decoding across individuals and offers insights for practical clinical applications.
Related papers
- NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models [68.89389652724378]
NOBLE is a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection.<n>It predicts distributions of neural dynamics accounting for the intrinsic experimental variability.<n>NOBLE is the first scaled-up deep learning framework validated on real experimental data.
arXiv Detail & Related papers (2025-06-05T01:01:18Z) - BrainStratify: Coarse-to-Fine Disentanglement of Intracranial Neural Dynamics [8.36470471250669]
Decoding speech directly from neural activity is a central goal in brain-computer interface (BCI) research.<n>In recent years, exciting advances have been made through the growing use of intracranial field potential recordings, such as stereo-ElectroEncephaloGraphy (sEEG) and ElectroCorticoGraphy (ECoG)<n>These neural signals capture rich population-level activity but present key challenges: (i) task-relevant neural signals are sparsely distributed across sEEG electrodes, and (ii) they are often entangled with task-irrelevant neural signals in both sEEG and ECo
arXiv Detail & Related papers (2025-05-26T19:36:39Z) - Spatiotemporal Learning of Brain Dynamics from fMRI Using Frequency-Specific Multi-Band Attention for Cognitive and Psychiatric Applications [5.199807441687141]
Multi-Band Net Brain (MBBN) is the first transformer-based framework to explicitly model frequency-specific brain dynamics.<n>Training on 49,673 individuals across three large-scale cohorts, MBBN sets a new state-of-the-art in predicting psychiatric and cognitive outcomes.
arXiv Detail & Related papers (2025-03-30T10:56:50Z) - Towards Dynamic Neural Communication and Speech Neuroprosthesis Based on Viseme Decoding [25.555303640695577]
Decoding text, speech, or images from human neural signals holds promising potential both as neuroprosthesis for patients and as innovative communication tools.<n>We developed a diffusion model-based framework to decode visual speech intentions from speech-related non-invasive brain signals.<n>We successfully reconstructed coherent lip movements, effectively bridging the gap between brain signals and dynamic visual interfaces.
arXiv Detail & Related papers (2025-01-09T04:47:27Z) - Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
This paper introduces a novel approach to neural network design, termed neuron programming'', to enhance a network's representation ability at the neuronal level.
Comprehensive experiments validate that neuron programming can achieve competitive performance in retinal blood segmentation.
arXiv Detail & Related papers (2024-11-17T16:03:30Z) - Parsing altered brain connectivity in neurodevelopmental disorders by integrating graph-based normative modeling and deep generative networks [1.2115617129203957]
Quantifying divergence from neurotypical connectivity patterns offers a promising pathway to inform diagnosis and therapeutic interventions.
We present the Brain Representation via Individualized Deep Generative Embedding (BRIDGE) framework, which integrates normative modeling with a bio-inspired deep generative model.
BRIDGE provides a global neurodivergence score based on the difference between connectivity-based brain age and chronological age, along with region-wise neurodivergence maps that highlight localized connectivity differences.
arXiv Detail & Related papers (2024-10-14T20:21:11Z) - Graph-Based Representation Learning of Neuronal Dynamics and Behavior [2.3859858429583665]
We introduce the Temporal Attention-enhanced Variational Graph Recurrent Neural Network (TAVRNN), a novel framework that models time-varying neuronal connectivity.<n>TAVRNN learns latent dynamics at the single-unit level while maintaining interpretable population-level representations.<n>We validate TAVRNN on three diverse datasets: (1) electrophysiological data from a freely behaving rat, (2) primate somatosensory cortex recordings during a reaching task, and (3) biological neurons in the DishBrain platform interacting with a virtual game environment.
arXiv Detail & Related papers (2024-10-01T13:19:51Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - BrainBERT: Self-supervised representation learning for intracranial
recordings [18.52962864519609]
We create a reusable Transformer, BrainBERT, for intracranial recordings bringing modern representation learning approaches to neuroscience.
Much like in NLP and speech recognition, this Transformer enables classifying complex concepts, with higher accuracy and with much less data.
In the future, far more concepts will be decodable from neural recordings by using representation learning, potentially unlocking the brain like language models unlocked language.
arXiv Detail & Related papers (2023-02-28T07:40:37Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.