論文の概要: CAT:Collaborative Adversarial Training
- arxiv url: http://arxiv.org/abs/2303.14922v1
- Date: Mon, 27 Mar 2023 05:37:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 16:56:52.645286
- Title: CAT:Collaborative Adversarial Training
- Title(参考訳): CAT:協力的対人訓練
- Authors: Xingbin Liu, Huafeng Kuang, Xianming Lin, Yongjian Wu, Rongrong Ji
- Abstract要約: ニューラルネットワークの堅牢性を改善するために,協調的対人訓練フレームワークを提案する。
具体的には、異なる対戦型トレーニング手法を使用して、堅牢なモデルをトレーニングし、トレーニングプロセス中にモデルが自身の知識と対話できるようにします。
Cat は Auto-Attack ベンチマークの下で CIFAR-10 上の追加データを用いることなく、最先端の敵の堅牢性を達成している。
- 参考スコア(独自算出の注目度): 80.55910008355505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial training can improve the robustness of neural networks. Previous
methods focus on a single adversarial training strategy and do not consider the
model property trained by different strategies. By revisiting the previous
methods, we find different adversarial training methods have distinct
robustness for sample instances. For example, a sample instance can be
correctly classified by a model trained using standard adversarial training
(AT) but not by a model trained using TRADES, and vice versa. Based on this
observation, we propose a collaborative adversarial training framework to
improve the robustness of neural networks. Specifically, we use different
adversarial training methods to train robust models and let models interact
with their knowledge during the training process. Collaborative Adversarial
Training (CAT) can improve both robustness and accuracy. Extensive experiments
on various networks and datasets validate the effectiveness of our method. CAT
achieves state-of-the-art adversarial robustness without using any additional
data on CIFAR-10 under the Auto-Attack benchmark. Code is available at
https://github.com/liuxingbin/CAT.
- Abstract(参考訳): 敵対的なトレーニングは、ニューラルネットワークの堅牢性を改善することができる。
従来の方法は、単一の敵の訓練戦略に焦点を合わせ、異なる戦略で訓練されたモデル特性を考慮しない。
先行手法を再検討することで,サンプルインスタンスに対して異なる対向訓練手法が異なる頑健性を持つことが分かった。
例えば、サンプルインスタンスは標準敵訓練(AT)でトレーニングされたモデルで正しく分類できるが、TRADESでトレーニングされたモデルでは、その逆では分類できない。
そこで本研究では,ニューラルネットワークのロバスト性を改善するための協調学習フレームワークを提案する。
具体的には、異なる対戦型トレーニング手法を使用して、堅牢なモデルをトレーニングし、トレーニングプロセス中にモデルが知識と対話できるようにします。
CAT(Collaborative Adversarial Training)は、堅牢性と正確性の両方を改善する。
各種ネットワークおよびデータセットの大規模な実験により,本手法の有効性が検証された。
CATは、Auto-Attackベンチマークの下でCIFAR-10上の追加データを使用することなく、最先端の敵の堅牢性を達成する。
コードはhttps://github.com/liuxingbin/catで入手できる。
関連論文リスト
- Fast Propagation is Better: Accelerating Single-Step Adversarial
Training via Sampling Subnetworks [69.54774045493227]
逆行訓練の欠点は、逆行例の生成によって引き起こされる計算オーバーヘッドである。
モデルの内部構造ブロックを利用して効率を向上させることを提案する。
従来の手法と比較して,本手法はトレーニングコストを削減できるだけでなく,モデルの堅牢性も向上する。
論文 参考訳(メタデータ) (2023-10-24T01:36:20Z) - Adversarial Coreset Selection for Efficient Robust Training [11.510009152620666]
トレーニングデータの小さなサブセットを選択することは、堅牢なトレーニングの時間的複雑さを軽減するための原則的なアプローチを提供する方法を示す。
本手法が敵の訓練を2~3回高速化することを示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-09-13T07:37:53Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Long-term Cross Adversarial Training: A Robust Meta-learning Method for
Few-shot Classification Tasks [10.058068783476598]
本稿では,LCAT(Long-term Cross Adversarial Training)と呼ばれる,逆向き頑健なニューラルネットワークのメタラーニング手法を提案する。
逆行訓練により、LCATはAQよりも逆行訓練の半数しか必要とせず、結果として逆行訓練のエポックは低くなる。
実験の結果,LCATはクリーンおよび逆数ショットの分類精度において優れた性能を示した。
論文 参考訳(メタデータ) (2021-06-22T06:31:16Z) - Self-Progressing Robust Training [146.8337017922058]
敵対的なトレーニングのような現在の堅牢なトレーニング方法は、敵対的な例を生成するために「攻撃」を明示的に使用します。
我々はSPROUTと呼ばれる自己プログレッシブ・ロバスト・トレーニングのための新しいフレームワークを提案する。
その結果,スケーラブルで効果的で攻撃に依存しないロバストなトレーニング手法に新たな光を当てた。
論文 参考訳(メタデータ) (2020-12-22T00:45:24Z) - Single-step Adversarial training with Dropout Scheduling [59.50324605982158]
単段階逆行訓練法を用いて学習したモデルは、単段階逆行の発生を防止するために学習する。
提案手法を用いて訓練されたモデルは, 単段階攻撃と多段階攻撃の両方に対して堅牢である。
論文 参考訳(メタデータ) (2020-04-18T14:14:00Z) - CAT: Customized Adversarial Training for Improved Robustness [142.3480998034692]
そこで我々は,各トレーニングサンプルに対して,摂動レベルと対応するラベルを適応的にカスタマイズする,Customized Adversarial Training (CAT) という新しいアルゴリズムを提案する。
提案アルゴリズムは,従来の逆行訓練法よりもクリーンでロバストな精度が得られることを示す。
論文 参考訳(メタデータ) (2020-02-17T06:13:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。