論文の概要: Wasserstein distributional adversarial training for deep neural networks
- arxiv url: http://arxiv.org/abs/2502.09352v1
- Date: Thu, 13 Feb 2025 14:18:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:49:15.866726
- Title: Wasserstein distributional adversarial training for deep neural networks
- Title(参考訳): 深部ニューラルネットワークのためのワッサーシュタイン分布対向学習
- Authors: Xingjian Bai, Guangyi He, Yifan Jiang, Jan Obloj,
- Abstract要約: 本稿では,分散攻撃の脅威に対する訓練手法を提案する。
我々は、以前に訓練されたモデルに展開できる効率的な微調整手法を提案する。
我々は,RobostBench上で事前学習したモデルを用いて実験を行った。
- 参考スコア(独自算出の注目度): 4.0984142455934345
- License:
- Abstract: Design of adversarial attacks for deep neural networks, as well as methods of adversarial training against them, are subject of intense research. In this paper, we propose methods to train against distributional attack threats, extending the TRADES method used for pointwise attacks. Our approach leverages recent contributions and relies on sensitivity analysis for Wasserstein distributionally robust optimization problems. We introduce an efficient fine-tuning method which can be deployed on a previously trained model. We test our methods on a range of pre-trained models on RobustBench. These experimental results demonstrate the additional training enhances Wasserstein distributional robustness, while maintaining original levels of pointwise robustness, even for already very successful networks. The improvements are less marked for models pre-trained using huge synthetic datasets of 20-100M images. However, remarkably, sometimes our methods are still able to improve their performance even when trained using only the original training dataset (50k images).
- Abstract(参考訳): 深層ニューラルネットワークに対する敵対的攻撃の設計と、それらに対する敵的訓練の方法が、激しい研究の対象となっている。
本稿では,TRADES法を拡張した分散攻撃脅威に対する訓練手法を提案する。
提案手法は近年のコントリビューションを活用し, 分散ロバストな最適化問題に対する感度解析に頼っている。
我々は、以前に訓練されたモデルに展開できる効率的な微調整手法を提案する。
我々は,RobostBench上で事前学習したモデルを用いて実験を行った。
これらの実験結果は、既に非常に成功したネットワークであっても、ワッサーシュタイン分布のロバスト性を向上し、元のレベルのポイントワイドロバスト性を維持できることを示した。
20~100万枚の画像の巨大な合成データセットを使用して事前訓練されたモデルでは、改善点が少ない。
しかし、驚くべきことに、トレーニングデータセット(50k画像)のみを使用してトレーニングしても、我々のメソッドは依然としてパフォーマンスを向上させることができる。
関連論文リスト
- Fast Propagation is Better: Accelerating Single-Step Adversarial
Training via Sampling Subnetworks [69.54774045493227]
逆行訓練の欠点は、逆行例の生成によって引き起こされる計算オーバーヘッドである。
モデルの内部構造ブロックを利用して効率を向上させることを提案する。
従来の手法と比較して,本手法はトレーニングコストを削減できるだけでなく,モデルの堅牢性も向上する。
論文 参考訳(メタデータ) (2023-10-24T01:36:20Z) - CAT:Collaborative Adversarial Training [80.55910008355505]
ニューラルネットワークの堅牢性を改善するために,協調的対人訓練フレームワークを提案する。
具体的には、異なる対戦型トレーニング手法を使用して、堅牢なモデルをトレーニングし、トレーニングプロセス中にモデルが自身の知識と対話できるようにします。
Cat は Auto-Attack ベンチマークの下で CIFAR-10 上の追加データを用いることなく、最先端の敵の堅牢性を達成している。
論文 参考訳(メタデータ) (2023-03-27T05:37:43Z) - Adversarial Coreset Selection for Efficient Robust Training [11.510009152620666]
トレーニングデータの小さなサブセットを選択することは、堅牢なトレーニングの時間的複雑さを軽減するための原則的なアプローチを提供する方法を示す。
本手法が敵の訓練を2~3回高速化することを示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-09-13T07:37:53Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
本稿では,従来の対人訓練用データセットのみを用いて,最先端のパフォーマンスを得るために,分岐直交補助訓練(BORT)を提案する。
我々は, CIFAR-10, CIFAR-100, SVHN に対する Epsilon = 8/255 の ell_infty ノルム束縛摂動に対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-08-17T05:42:59Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
我々は,$textitslow start, fast decay$ learning rate schedulingストラテジーに基づく,単純かつ非常に効果的な敵の微調整手法を提案する。
実験の結果,提案手法はCIFAR-10, CIFAR-100, ImageNetデータセットの最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-25T20:50:15Z) - Self-Progressing Robust Training [146.8337017922058]
敵対的なトレーニングのような現在の堅牢なトレーニング方法は、敵対的な例を生成するために「攻撃」を明示的に使用します。
我々はSPROUTと呼ばれる自己プログレッシブ・ロバスト・トレーニングのための新しいフレームワークを提案する。
その結果,スケーラブルで効果的で攻撃に依存しないロバストなトレーニング手法に新たな光を当てた。
論文 参考訳(メタデータ) (2020-12-22T00:45:24Z) - Efficient Robust Training via Backward Smoothing [125.91185167854262]
敵の訓練は敵の例に対抗して最も効果的な戦略である。
トレーニングの各ステップにおける反復的な敵攻撃により、高い計算コストに悩まされる。
近年の研究では、単一段階攻撃を行うことで、高速な対人訓練が可能であることが示されている。
論文 参考訳(メタデータ) (2020-10-03T04:37:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。