論文の概要: On the Optimality of Misspecified Spectral Algorithms
- arxiv url: http://arxiv.org/abs/2303.14942v3
- Date: Tue, 3 Sep 2024 04:57:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 22:54:55.314682
- Title: On the Optimality of Misspecified Spectral Algorithms
- Title(参考訳): 不特定スペクトルアルゴリズムの最適性について
- Authors: Haobo Zhang, Yicheng Li, Qian Lin,
- Abstract要約: 誤ったスペクトルアルゴリズム問題では、研究者は通常、[mathcalH]s$の地下真の関数$f_rho*を仮定する。
スペクトルアルゴリズムは任意の$alpha_0-frac1beta s 1$に対して、$beta$は$mathcalH$の固有値減衰率であることを示す。
- 参考スコア(独自算出の注目度): 15.398375151050768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the misspecified spectral algorithms problem, researchers usually assume the underground true function $f_{\rho}^{*} \in [\mathcal{H}]^{s}$, a less-smooth interpolation space of a reproducing kernel Hilbert space (RKHS) $\mathcal{H}$ for some $s\in (0,1)$. The existing minimax optimal results require $\|f_{\rho}^{*}\|_{L^{\infty}}<\infty$ which implicitly requires $s > \alpha_{0}$ where $\alpha_{0}\in (0,1)$ is the embedding index, a constant depending on $\mathcal{H}$. Whether the spectral algorithms are optimal for all $s\in (0,1)$ is an outstanding problem lasting for years. In this paper, we show that spectral algorithms are minimax optimal for any $\alpha_{0}-\frac{1}{\beta} < s < 1$, where $\beta$ is the eigenvalue decay rate of $\mathcal{H}$. We also give several classes of RKHSs whose embedding index satisfies $ \alpha_0 = \frac{1}{\beta} $. Thus, the spectral algorithms are minimax optimal for all $s\in (0,1)$ on these RKHSs.
- Abstract(参考訳): 誤ったスペクトルアルゴリズム問題では、研究者は通常、地下の真関数 $f_{\rho}^{*} \in [\mathcal{H}]^{s}$, 再生されたカーネルヒルベルト空間(RKHS)$\mathcal{H}$ を、ある$s\in (0,1)$ と仮定する。
既存の minimax の最適結果は $\|f_{\rho}^{*}\|_{L^{\infty}}<\infty$ が暗黙的に$s > \alpha_{0}$ ここで $\alpha_{0}\in (0,1)$ は埋め込みインデックスであり、$\mathcal{H}$ に依存する定数である。
スペクトルアルゴリズムがすべての$s\in (0,1)$に対して最適であるかどうかは、何年も続く未解決の問題である。
本稿では、スペクトルアルゴリズムが任意の$\alpha_{0}-\frac{1}{\beta} < s < 1$, ここでは$\beta$は$\mathcal{H}$の固有値減衰率であることを示す。
埋め込みインデックスが $ \alpha_0 = \frac{1}{\beta} $ を満たす RKHS のクラスもいくつか用意する。
したがって、スペクトルアルゴリズムはこれらのRKHS上のすべての$s\in (0,1)$に対して最小値である。
関連論文リスト
- Nearly Optimal Regret for Decentralized Online Convex Optimization [53.433398074919]
分散オンライン凸最適化(D-OCO)は,局所計算と通信のみを用いて,グローバルな損失関数の列を最小化することを目的としている。
我々は凸関数と強い凸関数の残差をそれぞれ低減できる新しいD-OCOアルゴリズムを開発した。
我々のアルゴリズムは、$T$、$n$、$rho$の点でほぼ最適です。
論文 参考訳(メタデータ) (2024-02-14T13:44:16Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - On the Optimality of Misspecified Kernel Ridge Regression [13.995944403996566]
我々は、$mathcalH$がソボレフ RKHS であるとき、KRR が任意の$sin (0,1)$に対して最小値であることを示す。
論文 参考訳(メタデータ) (2023-05-12T04:12:12Z) - Krylov Methods are (nearly) Optimal for Low-Rank Approximation [8.017116107657206]
任意のアルゴリズムが$Omegaleft(log(n)/varepsilon1/2right)$ matrix-vector productを必要とし、Krylov法で得られる上限値と正確に一致することを示す。
我々の下位境界はOpen Question 1WooWoo14で、Spectral LRAのアルゴリズムの進歩の欠如の証拠を提供している。
論文 参考訳(メタデータ) (2023-04-06T16:15:19Z) - Lower Bounds on the Worst-Case Complexity of Efficient Global
Optimization [11.523746174066702]
我々は、その対応する再生核ヒルベルト空間(RKHS)における球の計量エントロピーの観点から、効率的な大域最適化の複雑さに対する統一された下界を導出する。
この下界は、一般に使用される2乗指数核とマタン核の非適応探索アルゴリズムによって達成された上界にほぼ一致することを示す。
論文 参考訳(メタデータ) (2022-09-20T11:57:13Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
我々は、任意のSchatten-$p$ノルムの下で、低ランク近似のためのクリロフ部分空間に基づく反復法について研究する。
我々の主な成果は、$tildeO(k/sqrtepsilon)$ matrix-vector productのみを使用するアルゴリズムである。
論文 参考訳(メタデータ) (2022-02-10T16:10:41Z) - Optimal SQ Lower Bounds for Learning Halfspaces with Massart Noise [9.378684220920562]
マスアートノイズの存在下でハーフスペースを学習するための、最も厳密な統計クエリ(SQ)の下界。
任意の $eta in [0,1/2]$ に対して、$eta$ よりも誤り分類誤差の少ない全ての SQ アルゴリズムは、スーパーポリノミカルな精度のクエリを必要とすることを示す。
論文 参考訳(メタデータ) (2022-01-24T17:33:19Z) - On the Self-Penalization Phenomenon in Feature Selection [69.16452769334367]
カーネル群に基づく暗黙の空間性誘導機構について述べる。
アプリケーションとしては、この疎結合誘導機構を使用して、特徴選択に一貫性のあるアルゴリズムを構築します。
論文 参考訳(メタデータ) (2021-10-12T09:36:41Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
我々は,バンディットフィードバックを用いてオンライン学習を学習する。
learnerは、コスト/リワード関数が"pseudo-1d"構造を許可するゼロ次オラクルのみにアクセスできる。
我々は、$T$がラウンドの数である任意のアルゴリズムの後悔のために$min(sqrtdT、T3/4)$の下限を示しています。
ランダム化オンライングラデーション下降とカーネル化指数重み法を組み合わせた新しいアルゴリズムsbcalgを提案し,疑似-1d構造を効果的に活用する。
論文 参考訳(メタデータ) (2021-02-15T08:16:51Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。