Deep Optimal Transport for Domain Adaptation on SPD Manifolds
- URL: http://arxiv.org/abs/2201.05745v4
- Date: Mon, 3 Jun 2024 08:51:23 GMT
- Title: Deep Optimal Transport for Domain Adaptation on SPD Manifolds
- Authors: Ce Ju, Cuntai Guan,
- Abstract summary: neuroimaging data possess the mathematical properties of symmetry and positive definiteness.
Applying conventional domain adaptation methods is challenging because these mathematical properties can be disrupted.
We introduce a novel geometric deep learning-based approach to manage discrepancies in both marginal and conditional distributions.
- Score: 9.552869120136005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The machine learning community has shown increasing interest in addressing the domain adaptation problem on symmetric positive definite (SPD) manifolds. This interest is primarily driven by the complexities of neuroimaging data generated from brain signals, which often exhibit shifts in data distribution across recording sessions. These neuroimaging data, represented by signal covariance matrices, possess the mathematical properties of symmetry and positive definiteness. However, applying conventional domain adaptation methods is challenging because these mathematical properties can be disrupted when operating on covariance matrices. In this study, we introduce a novel geometric deep learning-based approach utilizing optimal transport on SPD manifolds to manage discrepancies in both marginal and conditional distributions between the source and target domains. We evaluate the effectiveness of this approach in three cross-session brain-computer interface scenarios and provide visualized results for further insights. The GitHub repository of this study can be accessed at https://github.com/GeometricBCI/Deep-Optimal-Transport-for-Domain-Adaptation-on-SPD-Manifolds.
Related papers
- SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges [41.955864444491965]
Neuroimaging provides a critical framework for characterizing brain activity by quantifying connectivity patterns and functional architecture across modalities.
Modern machine learning has significantly advanced our understanding of neural processing mechanisms through these datasets.
This review focuses on machine learning approaches for covariance-based neuroimaging data, where often symmetric positive definite (SPD) matrices under full-rank conditions encode inter-channel relationships.
arXiv Detail & Related papers (2025-04-26T10:05:04Z) - Domain Adaptation and Entanglement: an Optimal Transport Perspective [86.24617989187988]
Current machine learning systems are brittle in the face of distribution shifts (DS), where the target distribution that the system is tested on differs from the source distribution used to train the system.
For deep neural networks, a popular framework for unsupervised domain adaptation (UDA) is domain matching, in which algorithms try to align the marginal distributions in the feature or output space.
In this paper, we derive new bounds based on optimal transport that analyze the UDA problem.
arXiv Detail & Related papers (2025-03-11T08:10:03Z) - SPDFusion: An Infrared and Visible Image Fusion Network Based on a Non-Euclidean Representation of Riemannian Manifolds [35.03742076163911]
We propose a novel SPD (symmetric positive definite) manifold learning framework for multi-modal image fusion.
Our framework exhibits superior performance compared to the current state-of-the-art methods.
arXiv Detail & Related papers (2024-11-16T03:09:49Z) - You are out of context! [0.0]
New data can act as forces stretching, compressing, or twisting the geometric relationships learned by a model.
We propose a novel drift detection methodology for machine learning (ML) models based on the concept of ''deformation'' in the vector space representation of data.
arXiv Detail & Related papers (2024-11-04T10:17:43Z) - Bridging Geometric States via Geometric Diffusion Bridge [79.60212414973002]
We introduce the Geometric Diffusion Bridge (GDB), a novel generative modeling framework that accurately bridges initial and target geometric states.
GDB employs an equivariant diffusion bridge derived by a modified version of Doob's $h$-transform for connecting geometric states.
We show that GDB surpasses existing state-of-the-art approaches, opening up a new pathway for accurately bridging geometric states.
arXiv Detail & Related papers (2024-10-31T17:59:53Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
arXiv Detail & Related papers (2024-07-04T12:15:42Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - Riemannian Self-Attention Mechanism for SPD Networks [34.794770395408335]
An SPD manifold self-attention mechanism (SMSA) is proposed in this paper.
An SMSA-based geometric learning module (SMSA-GL) is designed for the sake of improving the discrimination of structured representations.
arXiv Detail & Related papers (2023-11-28T12:34:46Z) - mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery
from Functional Connectomics Manifolds [8.37609145576126]
We propose a geometrically aware neural framework for connectomes, i.e., the mSPD-NN.
We demonstrate the efficacy of our mSPD-NN against common alternatives for SPD mean estimation.
It uncovers stable biomarkers associated with subtle network differences among patients with ADHD-ASD comorbidities and healthy controls.
arXiv Detail & Related papers (2023-03-27T08:30:11Z) - Adaptive Log-Euclidean Metrics for SPD Matrix Learning [73.12655932115881]
We propose Adaptive Log-Euclidean Metrics (ALEMs), which extend the widely used Log-Euclidean Metric (LEM)
The experimental and theoretical results demonstrate the merit of the proposed metrics in improving the performance of SPD neural networks.
arXiv Detail & Related papers (2023-03-26T18:31:52Z) - A Survey of Geometric Optimization for Deep Learning: From Euclidean
Space to Riemannian Manifold [7.737713458418288]
Deep Learning (DL) has achieved success in complex Artificial Intelligence (AI) tasks, but it suffers from various notorious problems.
This article presents a comprehensive survey of applying geometric optimization in DL.
It investigates the application of geometric optimization in different DL networks in various AI tasks, e.g., convolution neural network, recurrent neural network, transfer learning, and optimal transport.
arXiv Detail & Related papers (2023-02-16T10:50:15Z) - SPD domain-specific batch normalization to crack interpretable
unsupervised domain adaptation in EEG [25.642435946325925]
Current EEG technology does not generalize well across domains without expensive supervised re-calibration.
We propose a new building block for geometric deep learning, which we denote SPD domain-specific momentum batch normalization (SPDDSMBN)
A SPDDSMBN layer can transform domain-specific SPD inputs into domain-invariant SPD outputs, and can be readily applied to multi-source/-target and online UDA scenarios.
arXiv Detail & Related papers (2022-06-02T22:31:36Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
Federated learning is a distributed machine learning approach which enables a shared server model to learn by aggregating the locally-computed parameter updates with the training data from spatially-distributed client silos.
We propose the Federated Invariant Learning Consistency (FedILC) approach, which leverages the gradient covariance and the geometric mean of Hessians to capture both inter-silo and intra-silo consistencies.
This is relevant to various fields such as medical healthcare, computer vision, and the Internet of Things (IoT)
arXiv Detail & Related papers (2022-05-19T03:32:03Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.