Deep Optimal Transport for Domain Adaptation on SPD Manifolds
- URL: http://arxiv.org/abs/2201.05745v4
- Date: Mon, 3 Jun 2024 08:51:23 GMT
- Title: Deep Optimal Transport for Domain Adaptation on SPD Manifolds
- Authors: Ce Ju, Cuntai Guan,
- Abstract summary: neuroimaging data possess the mathematical properties of symmetry and positive definiteness.
Applying conventional domain adaptation methods is challenging because these mathematical properties can be disrupted.
We introduce a novel geometric deep learning-based approach to manage discrepancies in both marginal and conditional distributions.
- Score: 9.552869120136005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The machine learning community has shown increasing interest in addressing the domain adaptation problem on symmetric positive definite (SPD) manifolds. This interest is primarily driven by the complexities of neuroimaging data generated from brain signals, which often exhibit shifts in data distribution across recording sessions. These neuroimaging data, represented by signal covariance matrices, possess the mathematical properties of symmetry and positive definiteness. However, applying conventional domain adaptation methods is challenging because these mathematical properties can be disrupted when operating on covariance matrices. In this study, we introduce a novel geometric deep learning-based approach utilizing optimal transport on SPD manifolds to manage discrepancies in both marginal and conditional distributions between the source and target domains. We evaluate the effectiveness of this approach in three cross-session brain-computer interface scenarios and provide visualized results for further insights. The GitHub repository of this study can be accessed at https://github.com/GeometricBCI/Deep-Optimal-Transport-for-Domain-Adaptation-on-SPD-Manifolds.
Related papers
- You are out of context! [0.0]
New data can act as forces stretching, compressing, or twisting the geometric relationships learned by a model.
We propose a novel drift detection methodology for machine learning (ML) models based on the concept of ''deformation'' in the vector space representation of data.
arXiv Detail & Related papers (2024-11-04T10:17:43Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
arXiv Detail & Related papers (2024-07-04T12:15:42Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery
from Functional Connectomics Manifolds [8.37609145576126]
We propose a geometrically aware neural framework for connectomes, i.e., the mSPD-NN.
We demonstrate the efficacy of our mSPD-NN against common alternatives for SPD mean estimation.
It uncovers stable biomarkers associated with subtle network differences among patients with ADHD-ASD comorbidities and healthy controls.
arXiv Detail & Related papers (2023-03-27T08:30:11Z) - SPD domain-specific batch normalization to crack interpretable
unsupervised domain adaptation in EEG [25.642435946325925]
Current EEG technology does not generalize well across domains without expensive supervised re-calibration.
We propose a new building block for geometric deep learning, which we denote SPD domain-specific momentum batch normalization (SPDDSMBN)
A SPDDSMBN layer can transform domain-specific SPD inputs into domain-invariant SPD outputs, and can be readily applied to multi-source/-target and online UDA scenarios.
arXiv Detail & Related papers (2022-06-02T22:31:36Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
Federated learning is a distributed machine learning approach which enables a shared server model to learn by aggregating the locally-computed parameter updates with the training data from spatially-distributed client silos.
We propose the Federated Invariant Learning Consistency (FedILC) approach, which leverages the gradient covariance and the geometric mean of Hessians to capture both inter-silo and intra-silo consistencies.
This is relevant to various fields such as medical healthcare, computer vision, and the Internet of Things (IoT)
arXiv Detail & Related papers (2022-05-19T03:32:03Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.