論文の概要: The Devil is in the Points: Weakly Semi-Supervised Instance Segmentation
via Point-Guided Mask Representation
- arxiv url: http://arxiv.org/abs/2303.15062v1
- Date: Mon, 27 Mar 2023 10:11:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 15:59:24.896390
- Title: The Devil is in the Points: Weakly Semi-Supervised Instance Segmentation
via Point-Guided Mask Representation
- Title(参考訳): The Devil is the Points: Weakly Semi-Supervised Instance Segmentation via Point-Guided Mask Representation
- Authors: Beomyoung Kim, Joonhyun Jeong, Dongyoon Han, Sung Ju Hwang
- Abstract要約: 本稿では,ポイントラベル付き弱半教師付きインスタンスセグメンテーション(WSSIS)という新しい学習手法を提案する。
本稿では、予算に優しいポイントラベルを強力な弱監督源として効果的に活用できるWSSISの手法を提案する。
我々はCOCOとBDD100Kデータセットの広範な実験を行い、提案手法は完全な教師付きモデルのデータセットに匹敵する有望な結果を得る。
- 参考スコア(独自算出の注目度): 61.027468209465354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a novel learning scheme named weakly
semi-supervised instance segmentation (WSSIS) with point labels for
budget-efficient and high-performance instance segmentation. Namely, we
consider a dataset setting consisting of a few fully-labeled images and a lot
of point-labeled images. Motivated by the main challenge of semi-supervised
approaches mainly derives from the trade-off between false-negative and
false-positive instance proposals, we propose a method for WSSIS that can
effectively leverage the budget-friendly point labels as a powerful weak
supervision source to resolve the challenge. Furthermore, to deal with the hard
case where the amount of fully-labeled data is extremely limited, we propose a
MaskRefineNet that refines noise in rough masks. We conduct extensive
experiments on COCO and BDD100K datasets, and the proposed method achieves
promising results comparable to those of the fully-supervised model, even with
50% of the fully labeled COCO data (38.8% vs. 39.7%). Moreover, when using as
little as 5% of fully labeled COCO data, our method shows significantly
superior performance over the state-of-the-art semi-supervised learning method
(33.7% vs. 24.9%). The code is available at
https://github.com/clovaai/PointWSSIS.
- Abstract(参考訳): 本稿では、予算効率と高性能インスタンスセグメンテーションのためのポイントラベル付き弱半教師付きインスタンスセグメンテーション(WSSIS)という新しい学習手法を提案する。
すなわち,いくつかの完全ラベル付き画像と多数の点ラベル付き画像からなるデータセット設定を考える。
半教師付きアプローチの主な課題は、主に偽陰性と偽陽性のインスタンス提案のトレードオフに起因し、予算フレンドリーなポイントラベルを強力な弱い監督源として効果的に活用し、課題を解決するためのwssisの手法を提案する。
さらに、完全ラベル付きデータの量が極端に限られているハードケースに対処するために、粗いマスクのノイズを洗練するMaskRefineNetを提案する。
cocoおよびbdd100kデータセットについて広範な実験を行い,完全なラベル付きcocoデータ(38.8%対39.7%)の50%であっても,完全教師付きモデルに匹敵する有望な結果を得た。
さらに, 完全ラベル付きCOCOデータの5%程度を使用する場合, 最先端の半教師あり学習法(33.7%対24.9%)に比べて, 高い性能を示した。
コードはhttps://github.com/clovaai/PointWSSISで公開されている。
関連論文リスト
- When 3D Partial Points Meets SAM: Tooth Point Cloud Segmentation with Sparse Labels [39.54551717450374]
歯点クラウドセグメンテーションは多くの矯正用アプリケーションにおいて基本的なタスクである。
近年, 3次元セグメンテーションに弱いラベルを用い, 有望な結果を得る方法が提案されている。
本稿では,SAMTooth という名前のフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-03T08:14:56Z) - Inconsistency Masks: Removing the Uncertainty from Input-Pseudo-Label Pairs [0.0]
Inconsistency Masks (IM) は、画像と擬似ラベルのペアの不確実性をフィルタリングし、セグメンテーションの品質を大幅に向上させる新しい手法である。
4つの多様なデータセットに対して10%のラベル付きデータで強力なセグメンテーション結果を得る。
3つのハイブリッドアプローチは、完全にラベル付けされたデータセットでトレーニングされたモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-25T18:46:35Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
擬似ラベルは、弱い教師付き3Dセグメンテーションタスクに広く使われており、学習に使えるのはスパース・グラウンド・トラス・ラベルのみである。
本稿では,生成した擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭めるための新しい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-05-25T08:19:31Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
我々は,LiDAR点雲を用いた屋外シーンのためのラベル効率のよいセマンティックセマンティックセマンティクスパイプラインを提案する。
本手法は,半弱教師付き学習を用いて,効率的なラベリング手法を設計する。
提案手法は,100%ラベル付き完全教師付き手法と比較して,さらに競争力が高い。
論文 参考訳(メタデータ) (2022-10-14T19:13:36Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
本稿では,1つのオブジェクトを1つのポイントでラベル付けするだけでよい,弱教師付き手法RWSegを提案する。
これらの疎いラベルにより、セマンティック情報とインスタンス情報を伝達する2つの分岐を持つ統一的なフレームワークを導入する。
具体的には、異なるインスタンスグラフ間の競合を促進するクロスグラフ競合ランダムウォークス(CRW)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-10T02:14:39Z) - A new weakly supervised approach for ALS point cloud semantic
segmentation [1.4620086904601473]
本稿では,ALS点雲のセマンティックセグメンテーションのための,ディープラーニングに基づく弱教師付きフレームワークを提案する。
不完全でスパースなラベルの対象となるラベルのないデータから潜在的情報を利用する。
本手法は, 総合精度が83.0%, 平均F1スコアが70.0%であり, それぞれ6.9%, 12.8%増加した。
論文 参考訳(メタデータ) (2021-10-04T14:00:23Z) - Boosting Semi-Supervised Face Recognition with Noise Robustness [54.342992887966616]
本稿では,自動ラベルによるラベル雑音に対して頑健な半教師付き顔認識に対する効果的な解法を提案する。
そこで我々は,gnが強化するロバストな学習能力に基づく,ノイズロバスト学習ラベリング(nroll)という,半教師付き顔認識ソリューションを開発した。
論文 参考訳(メタデータ) (2021-05-10T14:43:11Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
インスタンスセグメンテーションのための新規かつ原則的な半教師付きアクティブ学習フレームワークを提案する。
具体的には,クラス,バウンディングボックス,マスクの手がかりを明示的に評価するトリプレットスコア予測(tsp)という不確実性サンプリング戦略を提案する。
医用画像データセットを用いた結果から,提案手法が有意義な方法で利用可能なデータから知識を具現化することを示す。
論文 参考訳(メタデータ) (2020-12-09T02:36:52Z) - Large-Scale Object Detection in the Wild from Imbalanced Multi-Labels [128.77822070156057]
本研究では,対象物が明示的にあるいは暗黙的に複数のラベルを持つ可能性のあるラベル問題を定量的に解析する。
ラベルの不均衡に対処するために,ハイブリッドトレーニングスケジューラを用いたソフトサンプリング手法を提案する。
提案手法は3.34点の劇的な改善を実現し,オープンイメージの公開オブジェクト検出テストセット上で60.90mAPの最高の単一モデルを実現する。
論文 参考訳(メタデータ) (2020-05-18T04:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。