論文の概要: Towards Artistic Image Aesthetics Assessment: a Large-scale Dataset and
a New Method
- arxiv url: http://arxiv.org/abs/2303.15166v1
- Date: Mon, 27 Mar 2023 12:59:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 15:22:03.427887
- Title: Towards Artistic Image Aesthetics Assessment: a Large-scale Dataset and
a New Method
- Title(参考訳): 芸術的イメージ美学評価に向けて : 大規模データセットと新しい方法
- Authors: Ran Yi, Haoyuan Tian, Zhihao Gu, Yu-Kun Lai and Paul L. Rosin
- Abstract要約: まず、Boldbrush Artistic Image dataset (BAID)という大規模なAIAAデータセットを紹介します。
そこで我々は,芸術的イメージを評価するために,スタイル特異的で汎用的な美的情報を効果的に抽出し,活用する新たな手法であるSAANを提案する。
実験により,提案手法は提案したBAIDデータセット上で既存のIAA手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 64.40494830113286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image aesthetics assessment (IAA) is a challenging task due to its highly
subjective nature. Most of the current studies rely on large-scale datasets
(e.g., AVA and AADB) to learn a general model for all kinds of photography
images. However, little light has been shed on measuring the aesthetic quality
of artistic images, and the existing datasets only contain relatively few
artworks. Such a defect is a great obstacle to the aesthetic assessment of
artistic images. To fill the gap in the field of artistic image aesthetics
assessment (AIAA), we first introduce a large-scale AIAA dataset: Boldbrush
Artistic Image Dataset (BAID), which consists of 60,337 artistic images
covering various art forms, with more than 360,000 votes from online users. We
then propose a new method, SAAN (Style-specific Art Assessment Network), which
can effectively extract and utilize style-specific and generic aesthetic
information to evaluate artistic images. Experiments demonstrate that our
proposed approach outperforms existing IAA methods on the proposed BAID dataset
according to quantitative comparisons. We believe the proposed dataset and
method can serve as a foundation for future AIAA works and inspire more
research in this field. Dataset and code are available at:
https://github.com/Dreemurr-T/BAID.git
- Abstract(参考訳): 画像美学評価(IAA)は、その主観性が高いため難しい課題である。
現在の研究の多くは、あらゆる種類の写真画像の一般的なモデルを学ぶために大規模なデータセット(AVAやAADBなど)に依存している。
しかし、芸術的イメージの美的品質を測る光はほとんどなく、既存のデータセットには比較的少ないアートワークしか含まれていない。
このような欠陥は芸術的イメージの美的評価に大きな障害となる。
芸術的画像美学評価(AIAA)の分野におけるギャップを埋めるために、我々はまず大規模なAIAAデータセット、Boldbrush Artistic Image Dataset(BAID)を紹介した。
そこで我々は,スタイル特異的で汎用的な美的情報を効果的に抽出し,活用できるSAAN(Style-specific Art Assessment Network)を提案する。
実験により,提案手法はBAIDデータセット上での既存のIAA手法よりも高い性能を示した。
提案したデータセットと手法は,今後のAIAA研究の基盤として機能し,この分野のさらなる研究を促すことができると考えている。
データセットとコードは、https://github.com/Dreemurr-T/BAID.gitで入手できる。
関連論文リスト
- APDDv2: Aesthetics of Paintings and Drawings Dataset with Artist Labeled Scores and Comments [45.57709215036539]
Aesthetics Paintings and Drawings dataset (APDD)は,24の異なる芸術カテゴリーと10の美的属性を含む最初の総合的な絵画コレクションである。
APDDv2は画像コーパスを拡張し、アノテーションの品質を改善し、詳細な言語コメントを特徴としている。
本稿では,ArtCLIP(Art Assessment Network for Specific Painting Styles)の改訂版について紹介する。
論文 参考訳(メタデータ) (2024-11-13T11:46:42Z) - AID-AppEAL: Automatic Image Dataset and Algorithm for Content Appeal Enhancement and Assessment Labeling [11.996211235559866]
Image Content Appeal Assessment (ICAA) は、画像のコンテンツが視聴者に対して生成する肯定的な関心のレベルを定量化する新しいメトリクスである。
ICAAは、画像の芸術的品質を判断する伝統的な画像美学評価(IAA)とは異なる。
論文 参考訳(メタデータ) (2024-07-08T01:40:32Z) - Paintings and Drawings Aesthetics Assessment with Rich Attributes for Various Artistic Categories [47.705077586687196]
Aesthetics of Paintings and Drawingsデータセットは、合計4985枚の画像で構成され、注釈数は31100枚を超える。
APDDの建設は世界中の28人のプロアーティストから活発に参加し、芸術分野を専門とする数十人の学生が参加した。
最終的なAPDDデータセットは、合計4985のイメージで構成され、アノテーション数は31100を超える。
論文 参考訳(メタデータ) (2024-05-05T16:05:56Z) - Image Aesthetics Assessment via Learnable Queries [59.313054821874864]
本稿では,IAA-LQを用いた画像美学評価手法を提案する。
フリーズされた画像エンコーダから得られた事前訓練された画像特徴から、学習可能なクエリを適応して美的特徴を抽出する。
実世界のデータに関する実験では、IAA-LQの利点が示され、SRCCとPLCCでそれぞれ2.2%、そして2.1%が最先端の手法に勝っている。
論文 参考訳(メタデータ) (2023-09-06T09:42:16Z) - Learning to Evaluate the Artness of AI-generated Images [64.48229009396186]
アートスコア(ArtScore)は、アーティストによる本物のアートワークと画像がどの程度似ているかを評価するために設計されたメトリクスである。
我々は、写真とアートワークの生成のために事前訓練されたモデルを採用し、一連の混合モデルを生み出した。
このデータセットはニューラルネットワークのトレーニングに使用され、任意の画像の定量化精度レベルを推定する方法を学ぶ。
論文 参考訳(メタデータ) (2023-05-08T17:58:27Z) - VILA: Learning Image Aesthetics from User Comments with Vision-Language
Pretraining [53.470662123170555]
ユーザからのコメントから画像美学を学習し、マルチモーダルな美学表現を学習するための視覚言語事前学習手法を提案する。
具体的には、コントラスト的および生成的目的を用いて、画像テキストエンコーダ-デコーダモデルを事前訓練し、人間のラベルなしでリッチで汎用的な美的意味学を学習する。
以上の結果から,AVA-Captionsデータセットを用いた画像の美的字幕化において,事前学習した美的視覚言語モデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-03-24T23:57:28Z) - Distilling Knowledge from Object Classification to Aesthetics Assessment [68.317720070755]
画像美学アセスメント(IAA)の主なジレンマは、審美ラベルの抽象的な性質に由来する。
我々は,IAAモデルに対して,多様な画像内容のセマンティック・パターンに関する知識を抽出することを提案する。
蒸留知識を用いてエンド・ツー・エンドのシングルバックボーンIAAモデルを監督することにより、IAAモデルの性能が大幅に向上する。
論文 参考訳(メタデータ) (2022-06-02T00:39:01Z) - Personalized Image Aesthetics Assessment with Rich Attributes [35.61053167813472]
我々は、パーソナライズされた画像美学の最も包括的な主観的研究を行い、Rich Attributes (PARA) を用いたパーソナライズされた画像美学データベースを導入する。
PARAは、9つの画像指向の目的属性と4つの人間指向の主観的属性を含む、リッチなアノテーションを備えている。
また,条件付きPIAAモデルも提案する。
論文 参考訳(メタデータ) (2022-03-31T02:23:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。