論文の概要: How far generated data can impact Neural Networks performance?
- arxiv url: http://arxiv.org/abs/2303.15223v1
- Date: Mon, 27 Mar 2023 14:02:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 15:04:41.454990
- Title: How far generated data can impact Neural Networks performance?
- Title(参考訳): 生成したデータはニューラルネットワークのパフォーマンスにどの程度影響するか?
- Authors: Sayeh Gholipour Picha, Dawood AL Chanti, Alice Caplier
- Abstract要約: ニューラルネットワークの性能向上において、生成したデータが実際のデータにどの程度役立つかを検討する。
実験の結果,実データに対する5倍の合成データが精度16%向上することが判明した。
- 参考スコア(独自算出の注目度): 2.578242050187029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of deep learning models depends on the size and quality of the
dataset to solve certain tasks. Here, we explore how far generated data can aid
real data in improving the performance of Neural Networks. In this work, we
consider facial expression recognition since it requires challenging local data
generation at the level of local regions such as mouth, eyebrows, etc, rather
than simple augmentation. Generative Adversarial Networks (GANs) provide an
alternative method for generating such local deformations but they need further
validation. To answer our question, we consider noncomplex Convolutional Neural
Networks (CNNs) based classifiers for recognizing Ekman emotions. For the data
generation process, we consider generating facial expressions (FEs) by relying
on two GANs. The first generates a random identity while the second imposes
facial deformations on top of it. We consider training the CNN classifier using
FEs from: real-faces, GANs-generated, and finally using a combination of real
and GAN-generated faces. We determine an upper bound regarding the data
generation quantity to be mixed with the real one which contributes the most to
enhancing FER accuracy. In our experiments, we find out that 5-times more
synthetic data to the real FEs dataset increases accuracy by 16%.
- Abstract(参考訳): ディープラーニングモデルの成功は、特定のタスクを解決するためのデータセットのサイズと品質に依存する。
本稿では,ニューラルネットワークの性能向上において,生成データがどのように役立つかを検討する。
そこで本研究では, 表情認識を, 簡単な補足ではなく, 口, まぶたなどの局所的な領域レベルで, 局所的なデータ生成に挑戦する必要があるため, 表情認識を検討する。
Generative Adversarial Networks (GAN) はそのような局所的な変形を生成する代替手法を提供するが、さらなる検証が必要である。
そこで我々は,非複雑畳み込みニューラルネットワーク(CNN)に基づくEkman感情認識のための分類器を検討する。
データ生成プロセスでは、2つのGANを頼りに表情(FE)を生成することを検討する。
第1はランダムなアイデンティティを生成し、第2は顔の変形をその上に課す。
我々は,実顔,GAN生成,および実顔とGAN生成顔の組み合わせを用いて,CNN分類器の訓練を検討する。
我々は、FER精度の向上に最も寄与する実データと混合するデータ生成量に関する上限を決定する。
実験の結果,実データに対する5倍の合成データが精度16%向上することが判明した。
関連論文リスト
- Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - SMaRt: Improving GANs with Score Matching Regularity [94.81046452865583]
生成的敵ネットワーク(GAN)は通常、基礎となる多様体が複雑である非常に多様なデータから学ぶのに苦労する。
スコアマッチングは、生成したデータポイントを実データ多様体へ持続的にプッシュする能力のおかげで、この問題に対する有望な解決策であることを示す。
スコアマッチング規則性(SMaRt)を用いたGANの最適化を提案する。
論文 参考訳(メタデータ) (2023-11-30T03:05:14Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
本研究では,ディープ・インバーチブル・ニューラルネットワークを用いた条件生成について述べる。
私たちの目標は,前処理と後処理の予測と生成を同時に行うことにあるので,エンドツーエンドのトレーニングアプローチを採用しています。
論文 参考訳(メタデータ) (2022-06-02T17:28:33Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
本稿では,局所的な部分グラフ構造によりノード特性を向上する局所拡張を提案する。
局所的な拡張に基づいて、プラグイン・アンド・プレイ方式で任意のGNNモデルに適用可能な、LA-GNNという新しいフレームワークをさらに設計する。
論文 参考訳(メタデータ) (2021-09-08T18:10:08Z) - Self-Competitive Neural Networks [0.0]
ディープニューラルネットワーク(DNN)は、多くのアプリケーションにおける分類問題の精度を改善している。
DNNをトレーニングする際の課題の1つは、その正確性を高め、過度な適合に苦しむことを避けるために、豊富なデータセットによって供給される必要があることである。
近年,データ拡張手法の提案が盛んに行われている。
本稿では,各クラスのドメイン・オブ・アトラクション(DoAs)を洗練させるために,逆データを生成します。このアプローチでは,各段階において,プライマリデータと生成された逆データ(その段階まで)から学習したモデルを用いて,プライマリデータを複雑な方法で操作する。
論文 参考訳(メタデータ) (2020-08-22T12:28:35Z) - Surgical Mask Detection with Convolutional Neural Networks and Data
Augmentations on Spectrograms [8.747840760772268]
人間の声のサンプルにおける手術用マスク検出の2値分類タスクに対するデータ拡張の効果を示す。
結果、ComParEのベースラインのほとんどがパフォーマンスに優れていたことが判明した。
論文 参考訳(メタデータ) (2020-08-11T09:02:47Z) - Generative Adversarial Networks (GANs): An Overview of Theoretical
Model, Evaluation Metrics, and Recent Developments [9.023847175654602]
GAN(Generative Adversarial Network)は,大規模データ分散のサンプルを作成する上で有効な手法である。
GANはラベル付きトレーニングデータを広く使用せずにディープ表現を学習する適切な方法を提供する。
GANでは、ジェネレータと識別器のネットワークを同時にトレーニングする競合プロセスを通じて生成モデルを推定する。
論文 参考訳(メタデータ) (2020-05-27T05:56:53Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - xAI-GAN: Enhancing Generative Adversarial Networks via Explainable AI
Systems [16.360144499713524]
Generative Adversarial Networks (GAN) は、現実的な画像、音楽、テキスト、その他のデータの生成に成功しているディープニューラルネットワーク(DNN)の革命的なクラスである。
本稿では、AI(xAI)システムにおける最近の進歩を活用して、識別器からジェネレータへの「よりリッチな」修正フィードバックを提供する新しいGANクラスを提案する。
我々は、xAI-GANが標準GANよりも、MNISTとFMNISTの両方のデータセットで生成された画像の品質を最大23.18%向上させるのを観察する。
論文 参考訳(メタデータ) (2020-02-24T18:38:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。