Cascaded variational quantum eigensolver algorithm
- URL: http://arxiv.org/abs/2303.15237v3
- Date: Fri, 8 Mar 2024 16:57:59 GMT
- Title: Cascaded variational quantum eigensolver algorithm
- Authors: Daniel Gunlycke, C. Stephen Hellberg, and John P. T. Stenger
- Abstract summary: We present a cascaded variational quantum eigensolver algorithm that only requires the execution of a set of quantum circuits once rather than at every iteration.
The ansatz form does not restrict the Fock space and provides full control over the trial state.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present a cascaded variational quantum eigensolver algorithm that only
requires the execution of a set of quantum circuits once rather than at every
iteration during the parameter optimization process, thereby increasing the
computational throughput. This algorithm uses a quantum processing unit to
probe the needed probability mass functions and a classical processing unit
perform the remaining calculations, including the energy minimization. The
ansatz form does not restrict the Fock space and provides full control over the
trial state, including the implementation of symmetry and other physically
motivated constraints.
Related papers
- Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Unitary Quantum Algorithm for the Lattice-Boltzmann Method [0.0]
We present a quantum algorithm for computational fluid dynamics based on the Lattice-Boltzmann method.
Our results demonstrate that our quantum algorithm captures non-linearity.
arXiv Detail & Related papers (2024-05-22T07:03:54Z) - Boundary Treatment for Variational Quantum Simulations of Partial Differential Equations on Quantum Computers [1.6318838452579472]
The paper presents a variational quantum algorithm to solve initial-boundary value problems described by partial differential equations.
The approach uses classical/quantum hardware that is well suited for quantum computers of the current noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2024-02-28T18:19:33Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Determining the ability for universal quantum computing: Testing
controllability via dimensional expressivity [39.58317527488534]
Controllability tests can be used in the design of quantum devices to reduce the number of external controls.
We devise a hybrid quantum-classical algorithm based on a parametrized quantum circuit.
arXiv Detail & Related papers (2023-08-01T15:33:41Z) - Reliable optimization of arbitrary functions over quantum measurements [0.3902497155525132]
Given an arbitrary function of quantum measurements, how to obtain its optimal value is often considered as a basic yet important problem in various applications.
We propose reliable arbitrary functions over the space of quantum measurements by combining the so-called Gilbert's algorithm for convex optimization with certain algorithms.
arXiv Detail & Related papers (2023-02-15T09:07:15Z) - Constrained Quantum Optimization for Extractive Summarization on a
Trapped-ion Quantum Computer [13.528362112761805]
We show the largest-to-date execution of a quantum optimization algorithm that preserves constraints on quantum hardware.
We execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159.
We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.
arXiv Detail & Related papers (2022-06-13T16:21:04Z) - Adiabatic quantum computing with parameterized quantum circuits [0.0]
We propose a discrete version of adiabatic quantum computing that can be implemented in a near-term device.
We compare our proposed algorithm with the Variational Quantum Eigensolver on two classical optimization problems.
arXiv Detail & Related papers (2022-06-09T09:31:57Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.