Adiabatic quantum computing with parameterized quantum circuits
- URL: http://arxiv.org/abs/2206.04373v3
- Date: Mon, 15 Apr 2024 14:36:39 GMT
- Title: Adiabatic quantum computing with parameterized quantum circuits
- Authors: Ioannis Kolotouros, Ioannis Petrongonas, Miloš Prokop, Petros Wallden,
- Abstract summary: We propose a discrete version of adiabatic quantum computing that can be implemented in a near-term device.
We compare our proposed algorithm with the Variational Quantum Eigensolver on two classical optimization problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adiabatic quantum computing is a universal model for quantum computing whose implementation using a gate-based quantum computer requires depths that are unreachable in the early fault-tolerant era. To mitigate the limitations of near-term devices, a number of hybrid approaches have been pursued in which a parameterized quantum circuit prepares and measures quantum states and a classical optimization algorithm minimizes an objective function that encompasses the solution to the problem of interest. In this work, we propose a different approach starting by analyzing how a small perturbation of a Hamiltonian affects the parameters that minimize the energy within a family of parameterized quantum states. We derive a set of equations that allow us to compute the new minimum by solving a constrained linear system of equations that is obtained from measuring a series of observables on the unperturbed system. We then propose a discrete version of adiabatic quantum computing that can be implemented in a near-term device while at the same time is insensitive to the initialization of the parameters and to other limitations hindered in the optimization part of variational quantum algorithms. We compare our proposed algorithm with the Variational Quantum Eigensolver on two classical optimization problems, namely MaxCut and Number Partitioning, and on a quantum-spin configuration problem, the Transverse-Field Ising Chain model, and confirm that our approach demonstrates superior performance.
Related papers
- Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Cascaded variational quantum eigensolver algorithm [0.0]
We present a cascaded variational quantum eigensolver algorithm that only requires the execution of a set of quantum circuits once rather than at every iteration.
The ansatz form does not restrict the Fock space and provides full control over the trial state.
arXiv Detail & Related papers (2023-03-27T14:21:01Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
Variational quantum algorithms offer fascinating prospects for the solution of optimization problems using digital quantum computers.
However, the achievable performance in such algorithms and the role of quantum correlations therein remain unclear.
We show numerically as well as on an IBM quantum chip how highly squeezed states are generated in a systematic procedure.
arXiv Detail & Related papers (2022-05-20T18:00:06Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.