論文の概要: Joint Person Identity, Gender and Age Estimation from Hand Images using Deep Multi-Task Representation Learning
- arxiv url: http://arxiv.org/abs/2303.15263v4
- Date: Wed, 20 Mar 2024 12:39:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 23:16:59.340567
- Title: Joint Person Identity, Gender and Age Estimation from Hand Images using Deep Multi-Task Representation Learning
- Title(参考訳): ディープ・マルチタスク表現学習を用いた手話画像の人物識別・性別・年齢推定
- Authors: Nathanael L. Baisa,
- Abstract要約: 画像から人物の身元、性別、年齢を共同で推定するマルチタスク表現学習フレームワークを提案する。
公開可能な1kハンドデータセット上で,畳み込みベースと変圧器ベースの両方のディープラーニングアーキテクチャの評価と比較を行う。
実験により, 身元だけでなく, 被疑者の性別や年齢などの属性を手動画像から効率的に推定できることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a multi-task representation learning framework to jointly estimate the identity, gender and age of individuals from their hand images for the purpose of criminal investigations since the hand images are often the only available information in cases of serious crime such as sexual abuse. We investigate different up-to-date deep learning architectures and compare their performance for joint estimation of identity, gender and age from hand images of perpetrators of serious crime. To simplify the age prediction, we create age groups for the age estimation. We make extensive evaluations and comparisons of both convolution-based and transformer-based deep learning architectures on a publicly available 11k hands dataset. Our experimental analysis shows that it is possible to efficiently estimate not only identity but also other attributes such as gender and age of suspects jointly from hand images for criminal investigations, which is crucial in assisting international police forces in the court to identify and convict abusers.
- Abstract(参考訳): 本稿では, 性的虐待などの重大犯罪の場合において, 手動画像が唯一の情報であることから, 手動画像から人物の身元, 性別, 年齢を共同で推定するマルチタスク表現学習フレームワークを提案する。
重大犯罪の加害者の手動画像から身元、性別、年齢を同時推定するための最新のディープラーニングアーキテクチャについて検討し、それらの性能を比較した。
年齢予測を簡略化するため,年齢推定のための年齢群を作成する。
公開可能な1kハンドデータセット上で,畳み込みベースと変圧器ベースの両方のディープラーニングアーキテクチャの評価と比較を行う。
本研究は, 被疑者の身元だけでなく, 被疑者の性別や年齢などの属性を, 犯罪捜査のための手動画像から効果的に推定できることを示すものである。
関連論文リスト
- Individualized Deepfake Detection Exploiting Traces Due to Double
Neural-Network Operations [32.33331065408444]
既存のディープフェイク検出器は、画像が特定かつ識別可能な個人と関連付けられている場合、この検出タスクに最適化されない。
本研究では,個々の人物の顔画像のディープフェイク検出に焦点を当てた。
ニューラルネットワークのイデオロシティ特性を利用して検出性能を向上できることを実証する。
論文 参考訳(メタデータ) (2023-12-13T10:21:00Z) - There is a Time and Place for Reasoning Beyond the Image [63.96498435923328]
画像は人間の目へのピクセルだけでなく、他のソースからのコンテキスト情報から推論、関連付け、推論して、推論することで、より完全な画像を確立することができる。
我々は、ニューヨーク・タイムズ(NYT)から自動的に抽出された16k画像と関連するニュース、時間、位置のデータセットTARAと、WITから離れた監視対象として追加で61k例を紹介した。
我々は、最先端のジョイントモデルと人間のパフォーマンスの間に70%のギャップがあることを示し、これは、セグメントワイズ推論を用いて高レベルな視覚言語ジョイントモデルを動機づける提案モデルによってわずかに満たされている。
論文 参考訳(メタデータ) (2022-03-01T21:52:08Z) - Applying Artificial Intelligence for Age Estimation in Digital Forensic
Investigations [0.8122270502556371]
調査員は画像を見て、性発達段階やその他の人間の特徴を解釈することで、被害者の年齢を決定する必要があることが多い。
本稿では、既存の顔画像データセットを評価し、類似のデジタル法医学研究貢献のニーズに合わせて、新しいデータセットを提案する。
新しいデータセットは、IMDB-WIKIデータセットで事前トレーニングされたDeep Expectation (DEX)アルゴリズムでテストされる。
論文 参考訳(メタデータ) (2022-01-09T16:25:37Z) - Towards Privacy-Preserving Affect Recognition: A Two-Level Deep Learning
Architecture [2.9392867898439006]
本研究では,感情認識のための2段階のディープラーニングアーキテクチャを提案する。
アーキテクチャは、特徴間の時間的関係をキャプチャするリカレントニューラルネットワークで構成されている。
論文 参考訳(メタデータ) (2021-11-14T13:52:57Z) - FP-Age: Leveraging Face Parsing Attention for Facial Age Estimation in
the Wild [50.8865921538953]
年齢推定に顔のセマンティクスを明示的に組み込む手法を提案する。
我々は,顔解析に基づくネットワークを設計し,異なるスケールで意味情報を学習する。
提案手法は,既存の年齢推定手法を常に上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-21T14:31:32Z) - Automatic Main Character Recognition for Photographic Studies [78.88882860340797]
画像の主人公は、最初に見る人の注意を引く最も重要な人間である。
画像中の主文字の同定は,従来の写真研究やメディア分析において重要な役割を担っている。
機械学習に基づく人間のポーズ推定を用いて主文字を識別する手法を提案する。
論文 参考訳(メタデータ) (2021-06-16T18:14:45Z) - Age Gap Reducer-GAN for Recognizing Age-Separated Faces [72.26969872180841]
本稿では,年齢変化に伴う顔と時間変化をマッチングする新しいアルゴリズムを提案する。
提案手法は,顔の年齢推定と年齢別顔の検証を組み合わせた統合フレームワークである。
論文 参考訳(メタデータ) (2020-11-11T16:43:32Z) - Gender and Ethnicity Classification based on Palmprint and Palmar Hand
Images from Uncontrolled Environment [13.889082559371401]
性別、民族、年齢などのソフトなバイオメトリック属性は、バイオメトリックスや法医学の応用に有用な情報を提供する可能性がある。
性別と民族のラベルが収集され、一般に公開されているデータベースで被写体に提供される。
5つのディープラーニングモデルは、性別と民族の分類シナリオにおいて微調整され、評価される。
論文 参考訳(メタデータ) (2020-08-06T07:50:06Z) - From A Glance to "Gotcha": Interactive Facial Image Retrieval with
Progressive Relevance Feedback [72.29919762941029]
本稿では,目撃者から徐々にフィードバックを得て顔画像を取得するためのエンドツーエンドフレームワークを提案する。
追加のアノテーションを必要とせずに、私たちのモデルは少しのレスポンスの努力を犠牲にして適用できます。
論文 参考訳(メタデータ) (2020-07-30T18:46:25Z) - Investigating Bias in Deep Face Analysis: The KANFace Dataset and
Empirical Study [67.3961439193994]
現在までに最も包括的で大規模な顔画像とビデオのデータセットを導入している。
データは、アイデンティティ、正確な年齢、性別、親族関係の点で手動で注釈付けされる。
提案したベンチマークでネットワーク埋め込みをデバイアス化する手法を導入し,テストした。
論文 参考訳(メタデータ) (2020-05-15T00:14:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。