論文の概要: Class-Conditioned Transformation for Enhanced Robust Image Classification
- arxiv url: http://arxiv.org/abs/2303.15409v2
- Date: Mon, 04 Nov 2024 19:05:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:56:38.121746
- Title: Class-Conditioned Transformation for Enhanced Robust Image Classification
- Title(参考訳): ロバスト画像分類のためのクラス定義変換
- Authors: Tsachi Blau, Roy Ganz, Chaim Baskin, Michael Elad, Alex M. Bronstein,
- Abstract要約: 本稿では,Adrial-versa-Trained (AT)モデルを強化する新しいテスト時間脅威モデルを提案する。
コンディショナル・イメージ・トランスフォーメーションとディスタンス・ベース・予測(CODIP)を用いて動作する。
提案手法は,様々なモデル,ATメソッド,データセット,アタックタイプに関する広範な実験を通じて,最先端の成果を実証する。
- 参考スコア(独自算出の注目度): 19.738635819545554
- License:
- Abstract: Robust classification methods predominantly concentrate on algorithms that address a specific threat model, resulting in ineffective defenses against other threat models. Real-world applications are exposed to this vulnerability, as malicious attackers might exploit alternative threat models. In this work, we propose a novel test-time threat model agnostic algorithm that enhances Adversarial-Trained (AT) models. Our method operates through COnditional image transformation and DIstance-based Prediction (CODIP) and includes two main steps: First, we transform the input image into each dataset class, where the input image might be either clean or attacked. Next, we make a prediction based on the shortest transformed distance. The conditional transformation utilizes the perceptually aligned gradients property possessed by AT models and, as a result, eliminates the need for additional models or additional training. Moreover, it allows users to choose the desired balance between clean and robust accuracy without training. The proposed method achieves state-of-the-art results demonstrated through extensive experiments on various models, AT methods, datasets, and attack types. Notably, applying CODIP leads to substantial robust accuracy improvement of up to $+23\%$, $+20\%$, $+26\%$, and $+22\%$ on CIFAR10, CIFAR100, ImageNet and Flowers datasets, respectively.
- Abstract(参考訳): ロバスト分類法は、主に特定の脅威モデルに対処するアルゴリズムに集中し、結果として他の脅威モデルに対する非効果的な防御をもたらす。
悪意のある攻撃者が別の脅威モデルを利用する可能性があるため、現実世界のアプリケーションはこの脆弱性に晒されている。
そこで本研究では,Adversarial-Trained (AT) モデルを強化する新しいテスト時間脅威モデルアグノスティックアルゴリズムを提案する。
まず、入力画像を各データセットクラスに変換し、入力画像をクリーンまたはアタックする。
次に,最短変換距離に基づいて予測を行う。
条件変換は、ATモデルが持つ知覚的に整列した勾配特性を利用しており、結果として追加のモデルや追加の訓練の必要性を排除している。
さらに、ユーザーはトレーニングなしでクリーンさとロバストさのバランスを選択できる。
提案手法は,様々なモデル,ATメソッド,データセット,アタックタイプに関する広範な実験を通じて,最先端の成果を実証する。
特に、CODIPを適用すると、最大$+23\%$、$+20\%$、$+26\%$、$+22\%$がCIFAR10、CIFAR100、ImageNet、Flowersデータセットで大幅に精度が向上する。
関連論文リスト
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデルアタック(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - FACTUAL: A Novel Framework for Contrastive Learning Based Robust SAR Image Classification [10.911464455072391]
FACTUALは、逆行訓練と堅牢なSAR分類のためのコントラストラーニングフレームワークである。
本モデルでは, 洗浄試料の99.7%, 摂動試料の89.6%の精度が得られた。
論文 参考訳(メタデータ) (2024-04-04T06:20:22Z) - Enhancing Targeted Attack Transferability via Diversified Weight Pruning [0.3222802562733786]
悪意のある攻撃者は、画像に人間の知覚できないノイズを与えることによって、標的となる敵の例を生成することができる。
クロスモデル転送可能な敵の例では、モデル情報が攻撃者から秘密にされている場合でも、ニューラルネットワークの脆弱性は残る。
近年の研究では, エンサンブル法の有効性が示されている。
論文 参考訳(メタデータ) (2022-08-18T07:25:48Z) - Attackar: Attack of the Evolutionary Adversary [0.0]
本稿では、進化的、スコアベース、ブラックボックス攻撃であるtextitAttackarを紹介する。
アタッカーは、勾配のない最適化問題に使用できる新しい目的関数に基づいている。
以上の結果から,精度とクエリ効率の両面で,Attackarの優れた性能を示す。
論文 参考訳(メタデータ) (2022-08-17T13:57:23Z) - Threat Model-Agnostic Adversarial Defense using Diffusion Models [14.603209216642034]
ディープニューラルネットワーク(DNN)は、敵攻撃として知られる、知覚できない悪意のある摂動に対して非常に敏感である。
ディープニューラルネットワーク(DNN)は、敵攻撃として知られる、知覚できない悪意のある摂動に対して非常に敏感である。
論文 参考訳(メタデータ) (2022-07-17T06:50:48Z) - Towards Alternative Techniques for Improving Adversarial Robustness:
Analysis of Adversarial Training at a Spectrum of Perturbations [5.18694590238069]
逆行訓練(AT)とその変種は、逆行性摂動に対するニューラルネットワークの堅牢性を改善する進歩を先導している。
私たちは、$epsilon$の値のスペクトルに基づいてトレーニングされたモデルに焦点を当てています。
ATの代替改善は、そうでなければ1ドル(約1万2000円)も出なかったでしょう。
論文 参考訳(メタデータ) (2022-06-13T22:01:21Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Robust Binary Models by Pruning Randomly-initialized Networks [57.03100916030444]
ランダムな二元ネットワークから敵攻撃に対して頑健なモデルを得る方法を提案する。
ランダムな二元ネットワークを切断することにより、ロバストモデルの構造を学習する。
本手法は, 敵攻撃の有無で, 強力な抽選券仮説を立証する。
論文 参考訳(メタデータ) (2022-02-03T00:05:08Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - RAIN: A Simple Approach for Robust and Accurate Image Classification
Networks [156.09526491791772]
既存の敵防衛手法の大部分は、予測精度を犠牲にして堅牢性を実現することが示されている。
本稿では,ロバストおよび高精度画像分類N(RAIN)と呼ぶ新しい前処理フレームワークを提案する。
RAINは入力に対してランダム化を適用して、モデルフォワード予測パスと後方勾配パスの関係を壊し、モデルロバスト性を改善する。
STL10 と ImageNet のデータセットを用いて、様々な種類の敵攻撃に対する RAIN の有効性を検証する。
論文 参考訳(メタデータ) (2020-04-24T02:03:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。