Can Large Language Models assist in Hazard Analysis?
- URL: http://arxiv.org/abs/2303.15473v1
- Date: Sat, 25 Mar 2023 19:43:27 GMT
- Title: Can Large Language Models assist in Hazard Analysis?
- Authors: Simon Diemert, Jens H Weber
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable natural language processing and generation capabilities.
This paper explores the potential of integrating LLMs in the hazard analysis for safety-critical systems.
- Score: 1.599072005190786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs), such as GPT-3, have demonstrated remarkable
natural language processing and generation capabilities and have been applied
to a variety tasks, such as source code generation. This paper explores the
potential of integrating LLMs in the hazard analysis for safety-critical
systems, a process which we refer to as co-hazard analysis (CoHA). In CoHA, a
human analyst interacts with an LLM via a context-aware chat session and uses
the responses to support elicitation of possible hazard causes. In this
experiment, we explore CoHA with three increasingly complex versions of a
simple system, using Open AI's ChatGPT service. The quality of ChatGPT's
responses were systematically assessed to determine the feasibility of CoHA
given the current state of LLM technology. The results suggest that LLMs may be
useful for supporting human analysts performing hazard analysis.
Related papers
- Potential and Perils of Large Language Models as Judges of Unstructured Textual Data [0.631976908971572]
This research investigates the effectiveness of LLM-as-judge models to evaluate the thematic alignment of summaries generated by other LLMs.
Our findings reveal that while LLM-as-judge offer a scalable solution comparable to human raters, humans may still excel at detecting subtle, context-specific nuances.
arXiv Detail & Related papers (2025-01-14T14:49:14Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
This survey collects and analyzes the different threats faced by large language models-based agents.
We identify six key features of LLM-based agents, based on which we summarize the current research progress.
We select four representative agents as case studies to analyze the risks they may face in practical use.
arXiv Detail & Related papers (2024-11-14T15:40:04Z) - Generative LLM Powered Conversational AI Application for Personalized Risk Assessment: A Case Study in COVID-19 [6.367429891237191]
Large language models (LLMs) have shown remarkable capabilities in various natural language tasks.
This work demonstrates a new LLM-powered disease risk assessment approach via streaming human-AI conversation.
arXiv Detail & Related papers (2024-09-23T13:55:13Z) - SHIELD: LLM-Driven Schema Induction for Predictive Analytics in EV Battery Supply Chain Disruptions [52.90276059116822]
SHIELD combines Large Language Models (LLMs) with domain expertise for EV battery supply chain risk assessment.
Evaluated on 12,070 paragraphs from 365 sources (2022-2023), SHIELD outperforms baseline GCNs and LLM+prompt methods in disruption prediction.
arXiv Detail & Related papers (2024-08-09T22:08:12Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
We propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks.
The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions.
We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
arXiv Detail & Related papers (2024-07-15T07:43:55Z) - AI Safety in Generative AI Large Language Models: A Survey [14.737084887928408]
Large Language Model (LLMs) that exhibit generative AI capabilities are facing accelerated adoption and innovation.
Generative AI (GAI) inevitably raises concerns about the risks and safety associated with these models.
This article provides an up-to-date survey of recent trends in AI safety research of GAI-LLMs from a computer scientist's perspective.
arXiv Detail & Related papers (2024-07-06T09:00:18Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
We propose a risk assessment process using tools like the risk rating methodology which is used for traditional systems.
We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors.
We also map threats against three key stakeholder groups.
arXiv Detail & Related papers (2024-03-20T05:17:22Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Large Language Models for Code Analysis: Do LLMs Really Do Their Job? [13.48555476110316]
Large language models (LLMs) have demonstrated significant potential in the realm of natural language understanding and programming code processing tasks.
This paper offers a comprehensive evaluation of LLMs' capabilities in performing code analysis tasks.
arXiv Detail & Related papers (2023-10-18T22:02:43Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - Trojaning Language Models for Fun and Profit [53.45727748224679]
TROJAN-LM is a new class of trojaning attacks in which maliciously crafted LMs trigger host NLP systems to malfunction.
By empirically studying three state-of-the-art LMs in a range of security-critical NLP tasks, we demonstrate that TROJAN-LM possesses the following properties.
arXiv Detail & Related papers (2020-08-01T18:22:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.