Feature Map for Quantum Data in Classification
- URL: http://arxiv.org/abs/2303.15665v2
- Date: Mon, 3 Jun 2024 05:56:32 GMT
- Title: Feature Map for Quantum Data in Classification
- Authors: Hyeokjea Kwon, Hojun Lee, Joonwoo Bae,
- Abstract summary: A quantum feature map corresponds to an instance with a Hilbert space of quantum states by fueling quantum resources to machine learning algorithms.
We present a feature map for quantum data as a probabilistic manipulation of quantum states to improve supervised learning algorithms.
- Score: 2.2940141855172036
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The kernel trick in supervised learning signifies transformations of an inner product by a feature map, which then restructures training data in a larger Hilbert space according to an endowed inner product. A quantum feature map corresponds to an instance with a Hilbert space of quantum states by fueling quantum resources to machine learning algorithms. In this work, we point out that the quantum state space is specific such that a measurement postulate characterizes an inner product and that manipulation of quantum states prepared from classical data cannot enhance the distinguishability of data points. We present a feature map for quantum data as a probabilistic manipulation of quantum states to improve supervised learning algorithms.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Q-means using variational quantum feature embedding [0.9572675949441442]
The objective of the Variational circuit is to maximally separate the clusters in the quantum feature Hilbert space.
The output of the quantum circuit are characteristic cluster quantum states that represent a superposition of all quantum states belonging to a particular cluster.
The gradient of the expectation value is used to optimize the parameters of the variational circuit to learn a better quantum feature map.
arXiv Detail & Related papers (2021-12-11T13:00:51Z) - Trainable Discrete Feature Embeddings for Variational Quantum Classifier [4.40450723619303]
We show how to map discrete features with fewer quantum bits using Quantum Random Access Coding (QRAC)
We propose a new method to embed discrete features with trainable quantum circuits by combining QRAC and a recently proposed strategy for training quantum feature map called quantum metric learning.
arXiv Detail & Related papers (2021-06-17T12:02:01Z) - Tree tensor network classifiers for machine learning: from
quantum-inspired to quantum-assisted [0.0]
We describe a quantum-assisted machine learning (QAML) method in which multivariate data is encoded into quantum states in a Hilbert space whose dimension is exponentially large in the length of the data vector.
We present an approach that can be implemented on gate-based quantum computing devices.
arXiv Detail & Related papers (2021-04-06T02:31:48Z) - Quantum State Discrimination for Supervised Classification [0.5772546394254112]
We show how quantum state discrimination can represent a useful tool to address the standard classification problem in machine learning.
Previous studies have shown that the optimal quantum measurement theory can inspire a new binary classification algorithm.
We propose a model for arbitrary multiclass classification inspired by quantum state discrimination.
arXiv Detail & Related papers (2021-04-02T10:22:59Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Universal Approximation Property of Quantum Machine Learning Models in
Quantum-Enhanced Feature Spaces [0.0]
We study the capability of quantum feature maps in the classification of disjoint regions.
Our work enables an important theoretical analysis to ensure that machine learning algorithms based on quantum feature maps can handle a broad class of machine learning tasks.
arXiv Detail & Related papers (2020-09-01T09:09:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.