Trainable Discrete Feature Embeddings for Variational Quantum Classifier
- URL: http://arxiv.org/abs/2106.09415v1
- Date: Thu, 17 Jun 2021 12:02:01 GMT
- Title: Trainable Discrete Feature Embeddings for Variational Quantum Classifier
- Authors: Napat Thumwanit, Chayaphol Lortararprasert, Hiroshi Yano, Rudy Raymond
- Abstract summary: We show how to map discrete features with fewer quantum bits using Quantum Random Access Coding (QRAC)
We propose a new method to embed discrete features with trainable quantum circuits by combining QRAC and a recently proposed strategy for training quantum feature map called quantum metric learning.
- Score: 4.40450723619303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum classifiers provide sophisticated embeddings of input data in Hilbert
space promising quantum advantage. The advantage stems from quantum feature
maps encoding the inputs into quantum states with variational quantum circuits.
A recent work shows how to map discrete features with fewer quantum bits using
Quantum Random Access Coding (QRAC), an important primitive to encode binary
strings into quantum states. We propose a new method to embed discrete features
with trainable quantum circuits by combining QRAC and a recently proposed
strategy for training quantum feature map called quantum metric learning. We
show that the proposed trainable embedding requires not only as few qubits as
QRAC but also overcomes the limitations of QRAC to classify inputs whose
classes are based on hard Boolean functions. We numerically demonstrate its use
in variational quantum classifiers to achieve better performances in
classifying real-world datasets, and thus its possibility to leverage near-term
quantum computers for quantum machine learning.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Variational Quantum Kernels with Task-Specific Quantum Metric Learning [0.8722210937404288]
Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space.
We discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings.
arXiv Detail & Related papers (2022-11-08T18:36:25Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Q-means using variational quantum feature embedding [0.9572675949441442]
The objective of the Variational circuit is to maximally separate the clusters in the quantum feature Hilbert space.
The output of the quantum circuit are characteristic cluster quantum states that represent a superposition of all quantum states belonging to a particular cluster.
The gradient of the expectation value is used to optimize the parameters of the variational circuit to learn a better quantum feature map.
arXiv Detail & Related papers (2021-12-11T13:00:51Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z) - VSQL: Variational Shadow Quantum Learning for Classification [6.90132007891849]
We propose a new hybrid quantum-classical framework for supervised quantum learning, which we call Variational Shadow Quantum Learning.
We first use variational shadow quantum circuits to extract classical features in a convolution way and then utilize a fully-connected neural network to complete the classification task.
We show that this method could sharply reduce the number of parameters and thus better facilitate quantum circuit training.
arXiv Detail & Related papers (2020-12-15T13:51:01Z) - Efficient Discrete Feature Encoding for Variational Quantum Classifier [3.7576442570677253]
Variational quantum classification (VQC) is one of such methods with possible quantum advantage.
We introduce the use of quantum random-access coding (QRAC) to map discrete features efficiently into limited number of qubits for VQC.
We experimentally show that QRAC can help speeding up the training of VQC by reducing its parameters via saving on the number of qubits for the mapping.
arXiv Detail & Related papers (2020-05-29T04:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.