論文の概要: Enhancing Breast Cancer Risk Prediction by Incorporating Prior Images
- arxiv url: http://arxiv.org/abs/2303.15699v1
- Date: Tue, 28 Mar 2023 03:05:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 16:42:15.919155
- Title: Enhancing Breast Cancer Risk Prediction by Incorporating Prior Images
- Title(参考訳): 事前画像の導入による乳癌リスク予測の強化
- Authors: Hyeonsoo Lee, Junha Kim, Eunkyung Park, Minjeong Kim, Taesoo Kim,
Thijs Kooi
- Abstract要約: 本稿では,トランスフォーマーデコーダを用いた乳がんリスク予測のための新しい手法PRIME+を提案する。
我々は16,113検診のデータセットにアプローチを検証し,従来のマンモグラムから変化パターンを効果的に捉えることを実証した。
実験の結果,C-インデックスは0.68から0.73に増加し,最先端モデルよりも統計的に有意な改善が得られた。
- 参考スコア(独自算出の注目度): 10.362914141475917
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, deep learning models have shown the potential to predict breast
cancer risk and enable targeted screening strategies, but current models do not
consider the change in the breast over time. In this paper, we present a new
method, PRIME+, for breast cancer risk prediction that leverages prior
mammograms using a transformer decoder, outperforming a state-of-the-art risk
prediction method that only uses mammograms from a single time point. We
validate our approach on a dataset with 16,113 exams and further demonstrate
that it effectively captures patterns of changes from prior mammograms, such as
changes in breast density, resulting in improved short-term and long-term
breast cancer risk prediction. Experimental results show that our model
achieves a statistically significant improvement in performance over the
state-of-the-art based model, with a C-index increase from 0.68 to 0.73 (p <
0.05) on held-out test sets.
- Abstract(参考訳): 近年, 深層学習モデルでは乳がんリスクを予測し, スクリーニング戦略を可能にする可能性が示されたが, 乳がんの経時的変化は考慮されていない。
本稿では,乳がんリスク予測のための新しい手法 prime+ を提案する。この手法はトランスフォーマデコーダを用いて乳がんリスク予測を行う。
16,113件の検診をデータセット上で検証し,乳房密度の変化などの乳房x線写真の変化パターンを効果的に捉えることにより,乳がんリスク予測の短期的・長期的改善が期待できることを示した。
実験結果から,C-インデックスは0.68から0.73(p < 0.05)に増加し,最先端モデルよりも統計的に顕著な性能向上が得られた。
関連論文リスト
- Ordinal Learning: Longitudinal Attention Alignment Model for Predicting Time to Future Breast Cancer Events from Mammograms [16.06975226476176]
OA-BreaCR は,BC のリスクおよび時間・将来の予測タスクにおいて,既存の手法よりも優れる。
以上の結果から,BC検診・予防活動の強化に向けた解釈的かつ正確なリスク評価の重要性が示唆された。
論文 参考訳(メタデータ) (2024-09-10T22:03:26Z) - Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
転送学習は、よりリッチなデータを持つドメインから取得した機能を活用して、限られたデータを持つドメインのパフォーマンスを向上させるテクニックである。
本稿では,T2強調画像における乳癌からの転移学習による臨床的に有意な前立腺癌予知の改善について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - Longitudinal Mammogram Risk Prediction [6.28887425442237]
我々は最先端の機械学習モデルを拡張し、任意の数の縦マンモグラフィーを摂取し、将来の乳がんリスクを予測する。
以上の結果から,より長い歴史(例年4回のマンモグラム)が将来の乳癌のリスクを予測する精度を著しく向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-29T19:52:09Z) - Unsupversied feature correlation model to predict breast abnormal
variation maps in longitudinal mammograms [1.6249398255272316]
本研究は,乳腺異常の早期発見と診断の精度の向上に焦点を当てた。
縦2次元マンモグラフィーを用いて乳房異常変化を示す地図を生成するために, 新規な教師なし特徴相関ネットワークを開発した。
その結果,提案モデルは,精度,感度,特異性,Diceスコア,がん検出率において,ベースラインモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-12-28T01:37:55Z) - Leveraging Transformers to Improve Breast Cancer Classification and Risk
Assessment with Multi-modal and Longitudinal Data [3.982926115291704]
マルチモーダルトランス (MMT) はマンモグラフィーと超音波を相乗的に利用するニューラルネットワークである。
MMTは、現在の検査と以前の画像を比較することで、時間的組織変化を追跡する。
5年間のリスク予測では、MMTはAUROCの0.826を達成し、従来のマンモグラフィーベースのリスクモデルより優れている。
論文 参考訳(メタデータ) (2023-11-06T16:01:42Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - RADIFUSION: A multi-radiomics deep learning based breast cancer risk
prediction model using sequential mammographic images with image attention
and bilateral asymmetry refinement [0.36355629235144304]
本研究は, 画像注意放射能, ゲーティング機構, 左右非対称性に基づく微調整など, 様々な深層学習機構の重要性を強調した。
乳がんリスク評価のための強力なツールとして, RADIfusionが有用であることが示唆された。
論文 参考訳(メタデータ) (2023-04-01T08:18:13Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
骨分解性骨病変の進展を正確に予測し,可視化する深層学習フレームワークを開発した。
乳癌患者の骨格関連事象(SRE)を予防するための治療戦略の計画と評価を支援する。
論文 参考訳(メタデータ) (2022-03-20T21:00:10Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
オープンセット認識は、テストサンプルをトレーニングや"未知"から既知のクラスの1つに分類することで、分類タスクを一般化する
乳がん患者データに対して,画像データセットの最先端結果を実現するガウス混合変分オートエンコーダモデルを適用した。
より正確でロバストな分類結果が得られ,F1の平均値が24.5%上昇したばかりでなく,臨床環境への展開性の観点からも,オープンセット認識の再検討を行った。
論文 参考訳(メタデータ) (2022-01-09T04:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。