論文の概要: Leveraging Transformers to Improve Breast Cancer Classification and Risk
Assessment with Multi-modal and Longitudinal Data
- arxiv url: http://arxiv.org/abs/2311.03217v2
- Date: Wed, 15 Nov 2023 14:37:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 19:08:13.120884
- Title: Leveraging Transformers to Improve Breast Cancer Classification and Risk
Assessment with Multi-modal and Longitudinal Data
- Title(参考訳): マルチモーダル・縦断データを用いた乳癌分類とリスク評価の改善のためのトランスフォーマーの活用
- Authors: Yiqiu Shen, Jungkyu Park, Frank Yeung, Eliana Goldberg, Laura Heacock,
Farah Shamout, Krzysztof J. Geras
- Abstract要約: マルチモーダルトランス (MMT) はマンモグラフィーと超音波を相乗的に利用するニューラルネットワークである。
MMTは、現在の検査と以前の画像を比較することで、時間的組織変化を追跡する。
5年間のリスク予測では、MMTはAUROCの0.826を達成し、従来のマンモグラフィーベースのリスクモデルより優れている。
- 参考スコア(独自算出の注目度): 3.982926115291704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast cancer screening, primarily conducted through mammography, is often
supplemented with ultrasound for women with dense breast tissue. However,
existing deep learning models analyze each modality independently, missing
opportunities to integrate information across imaging modalities and time. In
this study, we present Multi-modal Transformer (MMT), a neural network that
utilizes mammography and ultrasound synergistically, to identify patients who
currently have cancer and estimate the risk of future cancer for patients who
are currently cancer-free. MMT aggregates multi-modal data through
self-attention and tracks temporal tissue changes by comparing current exams to
prior imaging. Trained on 1.3 million exams, MMT achieves an AUROC of 0.943 in
detecting existing cancers, surpassing strong uni-modal baselines. For 5-year
risk prediction, MMT attains an AUROC of 0.826, outperforming prior
mammography-based risk models. Our research highlights the value of multi-modal
and longitudinal imaging in cancer diagnosis and risk stratification.
- Abstract(参考訳): 乳癌検診は主にマンモグラフィーで行われ、高濃度の乳腺組織を持つ女性に超音波で補充されることが多い。
しかし、既存のディープラーニングモデルは、各モードを独立して分析し、画像のモダリティと時間にまたがる情報を統合する機会を欠いている。
本研究では,マンモグラフィと超音波を相乗的に利用するニューラルネットワークであるMulti-modal Transformer(MMT)を提案する。
MMTは、自己アテンションを通じてマルチモーダルデータを集約し、現在の検査と先行画像を比較して時間的組織変化を追跡する。
1.3百万回の試験で訓練され、MMTは既存のがんの検出において0.943のAUROCを達成した。
5年間のリスク予測では、MMTはAUROCの0.826を達成し、従来のマンモグラフィーベースのリスクモデルより優れている。
本研究は,癌診断とリスク階層化におけるマルチモーダル画像と縦画像の意義を明らかにする。
関連論文リスト
- Enhancing Trust in Clinically Significant Prostate Cancer Prediction with Multiple Magnetic Resonance Imaging Modalities [61.36288157482697]
米国では、前立腺がんが男性の死因としては2番目に多く、2024年には35,250人が死亡している。
本稿では,複数のMRIモダリティを組み合わせて深層学習モデルを訓練し,臨床的に有意な前立腺癌予測のためのモデルの信頼性を高めることを検討する。
論文 参考訳(メタデータ) (2024-11-07T12:48:27Z) - Towards Non-invasive and Personalized Management of Breast Cancer Patients from Multiparametric MRI via A Large Mixture-of-Modality-Experts Model [19.252851972152957]
本稿では,マルチパラメトリックMRI情報を統一構造内に組み込んだMOMEについて報告する。
MOMEは乳癌の正確かつ堅牢な同定を証明した。
BI-RADS 4患者の生検の必要性を7.3%減らし、AUROC0.709で3重陰性乳癌を分類し、AUROC0.694でネオアジュバント化学療法に対する病理学的完全反応を予測することができる。
論文 参考訳(メタデータ) (2024-08-08T05:04:13Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
本稿では, 異なる患者のCT像における腫瘍と血管の正確な関係を記述した, 学習可能なニューラル距離を提案する。
発達したリスクマーカーは, 術前因子の生存率の予測因子として最強であった。
論文 参考訳(メタデータ) (2023-08-01T12:46:02Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCaは、乳がん患者の画像データであるボリュームCDI$s$の複数機関のオープンソースベンチマークデータセットである。
Cancer-Net BCaは、機械学習の進歩を加速し、がんと戦う臨床医を助ける、グローバルなオープンソースイニシアチブの一部として、一般公開されている。
論文 参考訳(メタデータ) (2023-04-12T05:41:44Z) - RADIFUSION: A multi-radiomics deep learning based breast cancer risk
prediction model using sequential mammographic images with image attention
and bilateral asymmetry refinement [0.36355629235144304]
本研究は, 画像注意放射能, ゲーティング機構, 左右非対称性に基づく微調整など, 様々な深層学習機構の重要性を強調した。
乳がんリスク評価のための強力なツールとして, RADIfusionが有用であることが示唆された。
論文 参考訳(メタデータ) (2023-04-01T08:18:13Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Deep-CR MTLR: a Multi-Modal Approach for Cancer Survival Prediction with
Competing Risks [0.4189643331553922]
本稿では,癌生存予測のための新しい機械学習手法であるDeep-CR MTLRを提案する。
2552頭頸部癌患者のコホートにおける単一モダリティ予測器に対するマルチモーダルアプローチの予後改善効果を実証した。
論文 参考訳(メタデータ) (2020-12-10T15:51:47Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
論文 参考訳(メタデータ) (2020-05-29T21:23:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。