論文の概要: Scalable, Detailed and Mask-Free Universal Photometric Stereo
- arxiv url: http://arxiv.org/abs/2303.15724v1
- Date: Tue, 28 Mar 2023 04:18:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 16:31:54.657418
- Title: Scalable, Detailed and Mask-Free Universal Photometric Stereo
- Title(参考訳): スケーラブルで詳細かつマスクフリーのユニバーサル測光ステレオ
- Authors: Satoshi Ikehata
- Abstract要約: SDM-UniPSは画期的なスケーラブル,詳細,マスクフリー,ユニバーサルフォトメトリックステレオネットワークである。
我々のアプローチは、3Dスキャナーの品質に匹敵する、驚くほど複雑な表面のノーマルマップを復元することができる。
本稿では,多様な形状,材料,照明シナリオを含む新しい合成トレーニングデータセットを提案する。
- 参考スコア(独自算出の注目度): 4.822598110892846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce SDM-UniPS, a groundbreaking Scalable, Detailed,
Mask-free, and Universal Photometric Stereo network. Our approach can recover
astonishingly intricate surface normal maps, rivaling the quality of 3D
scanners, even when images are captured under unknown, spatially-varying
lighting conditions in uncontrolled environments. We have extended previous
universal photometric stereo networks to extract spatial-light features,
utilizing all available information in high-resolution input images and
accounting for non-local interactions among surface points. Moreover, we
present a new synthetic training dataset that encompasses a diverse range of
shapes, materials, and illumination scenarios found in real-world scenes.
Through extensive evaluation, we demonstrate that our method not only surpasses
calibrated, lighting-specific techniques on public benchmarks, but also excels
with a significantly smaller number of input images even without object masks.
- Abstract(参考訳): 本稿では,SDM-UniPS,画期的なスケーラブル,詳細,マスクフリー,ユニバーサル・フォトメトリック・ステレオネットワークを紹介する。
画像が未知の、空間的に不安定な照明条件下で撮影された場合でも、3dスキャナの品質に匹敵する、驚くほど複雑な表面正常マップを復元することができる。
我々は,従来のユニバーサルフォトメトリックステレオネットワークを拡張し,空間光の特徴を抽出し,高分解能入力画像における利用可能な情報をすべて活用し,表面点間の非局所的相互作用を計算した。
さらに,実世界のシーンに見られる様々な形状,材料,照明シナリオを包含する新しい合成学習データセットを提案する。
広汎な評価により,本手法は,公開ベンチマーク上での校正,照明固有の技術に勝るだけでなく,オブジェクトマスクを使わずとも,はるかに少ない入力画像に優れることを示した。
関連論文リスト
- IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations [64.07859467542664]
画像から幾何学的および物質的情報をキャプチャすることは、コンピュータビジョンとグラフィックスの基本的な課題である。
従来の最適化に基づく手法では、密集した多視点入力から幾何学、材料特性、環境照明を再構築するために数時間の計算時間を必要とすることが多い。
IDArbは、様々な照明条件下で、任意の画像に対して本質的な分解を行うために設計された拡散モデルである。
論文 参考訳(メタデータ) (2024-12-16T18:52:56Z) - RMAFF-PSN: A Residual Multi-Scale Attention Feature Fusion Photometric Stereo Network [37.759675702107586]
複雑な構造空間材料変化領域における2次元画像からの物体の正確な地図の予測は困難である。
画像の解像度の異なるステージとスケールから特徴情報を校正する手法を提案する。
このアプローチは、複雑な領域における物体のテクスチャや幾何学といった、より物理的な情報を保存する。
論文 参考訳(メタデータ) (2024-04-11T14:05:37Z) - Holistic Inverse Rendering of Complex Facade via Aerial 3D Scanning [38.72679977945778]
我々は多視点空中画像を用いて、ニューラルサイン距離場(SDF)を用いたファサードの形状、照明、材料を再構成する。
本実験は, ファサード全体の逆レンダリング, 新規なビュー合成, シーン編集において, 最先端のベースラインと比較して, 手法の優れた品質を示すものである。
論文 参考訳(メタデータ) (2023-11-20T15:03:56Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - Learning Efficient Photometric Feature Transform for Multi-view Stereo [37.26574529243778]
各ビューのperpixelフォトメトリック情報を,空間的特徴とビュー不変の低レベル特徴に変換することを学ぶ。
本フレームワークは,様々な入力データで利用可能な幾何学情報を自動的に適用し,効率的な利用を行う。
論文 参考訳(メタデータ) (2021-03-27T02:53:15Z) - Light Stage Super-Resolution: Continuous High-Frequency Relighting [58.09243542908402]
光ステージから採取した人間の顔の「超解像」を学習ベースで解析する手法を提案する。
本手法では,ステージ内の隣接する照明に対応する撮像画像を集約し,ニューラルネットワークを用いて顔の描画を合成する。
我々の学習モデルは、リアルな影と特異なハイライトを示す任意の光方向のレンダリングを生成することができる。
論文 参考訳(メタデータ) (2020-10-17T23:40:43Z) - Deep Photometric Stereo for Non-Lambertian Surfaces [89.05501463107673]
我々は、PS-FCNと呼ばれる、校正された測光ステレオのための完全な畳み込みディープネットワークを導入する。
PS-FCNは反射率観測から表面正規へのマッピングを学習し、一般的な等方反射率と未知の等方反射率で表面を処理できる。
光方向が不明な未定のシナリオに対処するため、入力画像から光方向を推定するLCNetという新しい畳み込みネットワークを導入する。
論文 参考訳(メタデータ) (2020-07-26T15:20:53Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
多視点光度ステレオ技術を用いて3次元形状と空間的に異なる反射率の両方をキャプチャする手法を提案する。
我々のアルゴリズムは、遠近点光源と遠近点光源に適している。
論文 参考訳(メタデータ) (2020-01-18T12:26:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。