Experimental Twin-Field Quantum Key Distribution Over 1000 km Fiber
Distance
- URL: http://arxiv.org/abs/2303.15795v1
- Date: Tue, 28 Mar 2023 07:59:59 GMT
- Title: Experimental Twin-Field Quantum Key Distribution Over 1000 km Fiber
Distance
- Authors: Yang Liu, Wei-Jun Zhang, Cong Jiang, Jiu-Peng Chen, Chi Zhang, Wen-Xin
Pan, Di Ma, Hao Dong, Jia-Min Xiong, Cheng-Jun Zhang, Hao Li, Rui-Chun Wang,
Jun Wu, Teng-Yun Chen, Lixing You, Xiang-Bin Wang, Qiang Zhang, and Jian-Wei
Pan
- Abstract summary: Quantum key distribution (QKD) aims to generate secure private keys shared by two remote parties.
We demonstrate a fiber-based twin-field QKD over 1002 km.
The secure key rate is $9.53times10-12$ per pulse through 1002 km fiber in the regime, and $8.75times10-12$ per pulse at 952 km considering the finite size effect.
- Score: 19.003857958984558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum key distribution (QKD) aims to generate secure private keys shared by
two remote parties. With its security being protected by principles of quantum
mechanics, some technology challenges remain towards practical application of
QKD. The major one is the distance limit, which is caused by the fact that a
quantum signal cannot be amplified while the channel loss is exponential with
the distance for photon transmission in optical fiber. Here using the
3-intensity sending-or-not-sending protocol with the
actively-odd-parity-pairing method, we demonstrate a fiber-based twin-field QKD
over 1002 km. In our experiment, we developed a dual-band phase estimation and
ultra-low noise superconducting nanowire single-photon detectors to suppress
the system noise to around 0.02 Hz. The secure key rate is $9.53\times10^{-12}$
per pulse through 1002 km fiber in the asymptotic regime, and
$8.75\times10^{-12}$ per pulse at 952 km considering the finite size effect.
Our work constitutes a critical step towards the future large-scale quantum
network.
Related papers
- 1002 km Twin-Field Quantum Key Distribution with Finite-Key Analysis [18.03339414738153]
Quantum key distribution (QKD) holds the potential to establish secure keys over long distances.
We adopt the 3-intensity sending-or-not-sending twin-field QKD protocol with the actively-odd-parity-pairing method.
The secure key rate for the 202 km, the normal distance between major cities, reached 111.74 kbps.
arXiv Detail & Related papers (2023-12-01T15:01:47Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - High-dimensional quantum key distribution using energy-time entanglement
over 242 km partially deployed fiber [8.905152890117282]
Entanglement-based quantum key distribution (QKD) is an essential ingredient in quantum communication.
We report an experimental QKD using energy-time entangled photon pairs that transmit over optical fibers of 242 km.
We generate secure keys with secure key rates of 0.22 bps and 0.06 bps in and finite-size regime.
arXiv Detail & Related papers (2022-12-06T01:37:57Z) - Single-emitter quantum key distribution over 175 km of fiber with
optimised finite key rates [45.82374977939355]
We perform fibre-based quantum key distribution with a quantum dot frequency-converted to telecom wavelength.
We demonstrate positive key rates up to 175 km in the regime.
This result represents major progress towards the feasibility of long-distance single-emitter QKD networks.
arXiv Detail & Related papers (2022-09-07T18:03:36Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Continuous entanglement distribution over a transnational 248 km fibre
link [58.720142291102135]
Entanglement is the basis of many quantum applications.
We present a continuously working international link between Austria and Slovakia.
We measure stable pair rates of 9 s$-1$ over an exemplary operation time of 110 hours.
arXiv Detail & Related papers (2022-03-23T13:55:27Z) - Quantum interference between independent solid-state single-photon
sources separated by 300 km fiber [9.597915082806276]
We report quantum interference between two single photons from independent QDs separated by 302 km optical fiber.
Our work represents a key step to long-distance solid-state quantum networks.
arXiv Detail & Related papers (2021-06-29T16:27:28Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Twin-Field Quantum Key Distribution over 511 km Optical Fiber Linking
two Distant Metropolitans [21.87659562677264]
We complete a twin field QKD (TF-QKD) and distribute secure keys without any trusted repeater over a 511 km long haul fiber trunk.
Our secure key rate is around 3 orders of magnitudes greater than what is expected if the previous QKD field test system over the same length were applied.
The efficient quantum-state transmission and stable single-photon interference over such a long distance deployed fiber paves the way to large-scale fiber quantum networks.
arXiv Detail & Related papers (2021-01-31T11:25:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.