論文の概要: Towards Effective Adversarial Textured 3D Meshes on Physical Face
Recognition
- arxiv url: http://arxiv.org/abs/2303.15818v1
- Date: Tue, 28 Mar 2023 08:42:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 15:54:03.682518
- Title: Towards Effective Adversarial Textured 3D Meshes on Physical Face
Recognition
- Title(参考訳): 顔の認識に有効な3次元テクスチャメッシュの実現に向けて
- Authors: Xiao Yang, Chang Liu, Longlong Xu, Yikai Wang, Yinpeng Dong, Ning
Chen, Hang Su, Jun Zhu
- Abstract要約: 本研究の目的は、商業システムに対する対角的堅牢性の評価をエンドツーエンドで行うことのできる、より信頼性の高い技術を開発することである。
我々は、人間の顔に精巧なトポロジーを持つ、敵のテクスチャ化された3Dメッシュ(AT3D)を設計し、攻撃者の顔に3Dプリントして貼り付けることで、防御を回避する。
メッシュベースの空間から逸脱するために,3次元形態モデルに基づく低次元係数空間の摂動を提案する。
- 参考スコア(独自算出の注目度): 42.60954035488262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face recognition is a prevailing authentication solution in numerous
biometric applications. Physical adversarial attacks, as an important
surrogate, can identify the weaknesses of face recognition systems and evaluate
their robustness before deployed. However, most existing physical attacks are
either detectable readily or ineffective against commercial recognition
systems. The goal of this work is to develop a more reliable technique that can
carry out an end-to-end evaluation of adversarial robustness for commercial
systems. It requires that this technique can simultaneously deceive black-box
recognition models and evade defensive mechanisms. To fulfill this, we design
adversarial textured 3D meshes (AT3D) with an elaborate topology on a human
face, which can be 3D-printed and pasted on the attacker's face to evade the
defenses. However, the mesh-based optimization regime calculates gradients in
high-dimensional mesh space, and can be trapped into local optima with
unsatisfactory transferability. To deviate from the mesh-based space, we
propose to perturb the low-dimensional coefficient space based on 3D Morphable
Model, which significantly improves black-box transferability meanwhile
enjoying faster search efficiency and better visual quality. Extensive
experiments in digital and physical scenarios show that our method effectively
explores the security vulnerabilities of multiple popular commercial services,
including three recognition APIs, four anti-spoofing APIs, two prevailing
mobile phones and two automated access control systems.
- Abstract(参考訳): 顔認識は多くの生体認証アプリケーションにおいて一般的な認証ソリューションである。
物理的敵対攻撃は、重要な代理として、顔認識システムの弱点を特定し、展開前にその堅牢性を評価することができる。
しかし、既存の物理的攻撃の多くは、容易に検出できるか、商業的な認識システムに対して効果的ではない。
この研究の目標は、商用システムにおける敵対的ロバストネスをエンドツーエンドで評価できる、より信頼性の高い技術を開発することである。
この技術は、ブラックボックス認識モデルと防御機構を同時に欺くことができる。
これを実現するために,人間の顔に精巧なトポロジーを施した3Dメッシュ(AT3D)を設計し,攻撃者の顔に3Dプリント&ペーストして防御を回避した。
しかし、メッシュベースの最適化方式は、高次元メッシュ空間の勾配を計算し、不満足な転送性で局所最適に閉じ込めることができる。
メッシュをベースとした空間から逸脱するために,3次元Morphable Modelに基づく低次元係数空間の摂動を提案し,より高速な探索効率と視覚的品質を享受しながら,ブラックボックス転送性を大幅に向上させる。
3つの認識API,4つのアンチ・スプーフィングAPI,2つの携帯電話と2つの自動アクセス制御システムを含む,一般的な商用サービスのセキュリティ脆弱性を効果的に調査することを示す。
関連論文リスト
- VoxAtnNet: A 3D Point Clouds Convolutional Neural Network for Generalizable Face Presentation Attack Detection [2.6118211807973157]
顔バイオメトリックシステムはプレゼンテーションアタック(PA)に対して脆弱である
本稿では,スマートフォンの前面カメラを用いて捉えた3次元点雲に基づくプレゼンテーション攻撃検出(PAD)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-19T07:30:36Z) - Towards Transferable Targeted 3D Adversarial Attack in the Physical World [34.36328985344749]
移動可能な敵攻撃は、セキュリティクリティカルなタスクにより大きな脅威をもたらす可能性がある。
我々は、少数のマルチビュー画像からTransferable Targeted 3Dのテクスチャメッシュに迅速に再構成できるTT3Dという新しいフレームワークを開発した。
実験結果から,TT3Dは優れたクロスモデル転送性を示すだけでなく,異なるレンダリングやビジョンタスクにも適応性を維持することが示唆された。
論文 参考訳(メタデータ) (2023-12-15T06:33:14Z) - AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware
Robust Adversarial Training [64.14759275211115]
そこで本研究では,DART3Dと呼ばれるモノクル3次元物体検出のための,深度対応の頑健な対向学習法を提案する。
我々の敵の訓練アプローチは、本質的な不確実性に乗じて、敵の攻撃に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2023-09-03T07:05:32Z) - M3FAS: An Accurate and Robust MultiModal Mobile Face Anti-Spoofing System [39.37647248710612]
フェイスプレゼンテーションアタック(FPA)は、様々な悪意あるアプリケーションを通じて、公衆の懸念を高めている。
我々は,M3FASという,正確で堅牢なマルチモーダル・モバイル・フェイス・アンチ・スポーフィングシステムを開発した。
論文 参考訳(メタデータ) (2023-01-30T12:37:04Z) - Face Presentation Attack Detection [59.05779913403134]
顔認識技術は、チェックインやモバイル支払いといった日々の対話的アプリケーションで広く利用されている。
しかしながら、プレゼンテーションアタック(PA)に対する脆弱性は、超セキュアなアプリケーションシナリオにおける信頼性の高い使用を制限する。
論文 参考訳(メタデータ) (2022-12-07T14:51:17Z) - Controllable Evaluation and Generation of Physical Adversarial Patch on
Face Recognition [49.42127182149948]
近年の研究では、顔認証モデルの物理的敵パッチに対する脆弱性が明らかにされている。
本稿では3次元顔モデルを用いて物理世界の顔の複雑な変形をシミュレートする。
さらに、3次元顔変換と現実的な物理的変動を考慮したFace3DAdv法を提案する。
論文 参考訳(メタデータ) (2022-03-09T10:21:40Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
本稿では,敵物体をホスト車両の上に配置することで,マルチセンサ検出の実用的感受性を示す。
実験の結果, 攻撃が成功した原因は主に画像の特徴が損なわれやすいことが判明した。
よりロバストなマルチモーダル知覚システムに向けて,特徴分断を伴う敵対的訓練が,このような攻撃に対するロバスト性を大幅に高めることを示す。
論文 参考訳(メタデータ) (2021-01-17T21:15:34Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。