論文の概要: Towards Transferable Targeted 3D Adversarial Attack in the Physical World
- arxiv url: http://arxiv.org/abs/2312.09558v3
- Date: Mon, 10 Jun 2024 15:10:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 04:28:28.886296
- Title: Towards Transferable Targeted 3D Adversarial Attack in the Physical World
- Title(参考訳): 物理的世界における移動可能な3次元敵攻撃に向けて
- Authors: Yao Huang, Yinpeng Dong, Shouwei Ruan, Xiao Yang, Hang Su, Xingxing Wei,
- Abstract要約: 移動可能な敵攻撃は、セキュリティクリティカルなタスクにより大きな脅威をもたらす可能性がある。
我々は、少数のマルチビュー画像からTransferable Targeted 3Dのテクスチャメッシュに迅速に再構成できるTT3Dという新しいフレームワークを開発した。
実験結果から,TT3Dは優れたクロスモデル転送性を示すだけでなく,異なるレンダリングやビジョンタスクにも適応性を維持することが示唆された。
- 参考スコア(独自算出の注目度): 34.36328985344749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared with transferable untargeted attacks, transferable targeted adversarial attacks could specify the misclassification categories of adversarial samples, posing a greater threat to security-critical tasks. In the meanwhile, 3D adversarial samples, due to their potential of multi-view robustness, can more comprehensively identify weaknesses in existing deep learning systems, possessing great application value. However, the field of transferable targeted 3D adversarial attacks remains vacant. The goal of this work is to develop a more effective technique that could generate transferable targeted 3D adversarial examples, filling the gap in this field. To achieve this goal, we design a novel framework named TT3D that could rapidly reconstruct from few multi-view images into Transferable Targeted 3D textured meshes. While existing mesh-based texture optimization methods compute gradients in the high-dimensional mesh space and easily fall into local optima, leading to unsatisfactory transferability and distinct distortions, TT3D innovatively performs dual optimization towards both feature grid and Multi-layer Perceptron (MLP) parameters in the grid-based NeRF space, which significantly enhances black-box transferability while enjoying naturalness. Experimental results show that TT3D not only exhibits superior cross-model transferability but also maintains considerable adaptability across different renders and vision tasks. More importantly, we produce 3D adversarial examples with 3D printing techniques in the real world and verify their robust performance under various scenarios.
- Abstract(参考訳): トランスファー可能な非標的攻撃と比較して、トランスファー可能な標的敵攻撃は、敵のサンプルの誤分類カテゴリを特定でき、セキュリティクリティカルなタスクに対する脅威が大きい。
一方、多視点ロバスト性の可能性から、既存のディープラーニングシステムの弱点をより包括的に識別することができ、アプリケーションの価値が高い。
しかし、移動可能な3次元敵攻撃の分野はいまだ空白である。
本研究の目的は、移動可能な3次元対向体を生成できるより効率的な技術を開発することであり、この分野のギャップを埋めることである。
この目的を達成するために,少数のマルチビュー画像からTransferable Targeted 3D テクスチャメッシュに迅速に再構成可能な TT3D という新しいフレームワークを設計した。
既存のメッシュベースのテクスチャ最適化手法では、高次元メッシュ空間の勾配を計算し、局所最適に陥りやすいため、不満足な転送性や歪みが生じるが、TT3Dは、グリッドベースのNeRF空間における特徴格子と多層パーセプトロン(MLP)パラメータの両方に対して、革新的に双対最適化を行い、自然さを享受しながらブラックボックスの転送性を大幅に向上する。
実験結果から,TT3Dは優れたクロスモデル転送性を示すだけでなく,異なるレンダリングやビジョンタスクにも適応性を維持することが示唆された。
さらに,実世界における3Dプリンティング技術を用いた3次元対向的な実例を作成し,その頑健な性能を様々なシナリオで検証する。
関連論文リスト
- Transferable 3D Adversarial Shape Completion using Diffusion Models [8.323647730916635]
3Dポイントクラウド機能学習は、3Dディープラーニングモデルのパフォーマンスを大幅に改善した。
既存の攻撃方法は、主にホワイトボックスのシナリオに焦点を当てており、最近提案された3Dディープラーニングモデルへの移行に苦労している。
本稿では,拡散モデルを用いて高品質な対向点雲を生成する。
提案した攻撃は、ブラックボックスモデルとディフェンスの両方に対して、最先端の敵攻撃法より優れている。
論文 参考訳(メタデータ) (2024-07-14T04:51:32Z) - Toward Availability Attacks in 3D Point Clouds [28.496421433836908]
距離正規化による2次元アベイラビリティーアタックを3次元点群に直接適用することは, 縮退の影響を受けやすいことを示す。
特徴空間に新たなショートカットを生成するFC-EM(Feature Collision Error-Minimization)法を提案する。
典型的なポイントクラウドデータセット,3次元頭蓋内動脈瘤医療データセット,および3次元顔データセットを用いて,我々のアプローチの優位性と実用性を検証する。
論文 参考訳(メタデータ) (2024-06-26T08:13:30Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
本稿では,LN3Diffと呼ばれる新しいフレームワークを導入し,統一された3次元拡散パイプラインに対処する。
提案手法では,3次元アーキテクチャと変分オートエンコーダを用いて,入力画像を構造化されたコンパクトな3次元潜在空間に符号化する。
3次元生成のためのShapeNetの最先端性能を実現し,モノクロ3次元再構成と条件付き3次元生成において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-18T17:54:34Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
自己回帰モデルでは,格子空間における関節分布をモデル化することにより,2次元画像生成において顕著な結果が得られた。
自動回帰モデルを3次元領域に拡張し,キャパシティとスケーラビリティを同時に向上することにより,3次元形状生成の強力な能力を求める。
論文 参考訳(メタデータ) (2024-02-19T15:33:09Z) - AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware
Robust Adversarial Training [64.14759275211115]
そこで本研究では,DART3Dと呼ばれるモノクル3次元物体検出のための,深度対応の頑健な対向学習法を提案する。
我々の敵の訓練アプローチは、本質的な不確実性に乗じて、敵の攻撃に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2023-09-03T07:05:32Z) - Towards Effective Adversarial Textured 3D Meshes on Physical Face
Recognition [42.60954035488262]
本研究の目的は、商業システムに対する対角的堅牢性の評価をエンドツーエンドで行うことのできる、より信頼性の高い技術を開発することである。
我々は、人間の顔に精巧なトポロジーを持つ、敵のテクスチャ化された3Dメッシュ(AT3D)を設計し、攻撃者の顔に3Dプリントして貼り付けることで、防御を回避する。
メッシュベースの空間から逸脱するために,3次元形態モデルに基づく低次元係数空間の摂動を提案する。
論文 参考訳(メタデータ) (2023-03-28T08:42:54Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
我々は、Mono3D上での教師なしドメイン適応のための新しい自己学習フレームワークSTMono3Dを提案する。
対象ドメイン上で適応的な擬似ラベルを生成するための教師学生パラダイムを開発する。
STMono3Dは、評価されたすべてのデータセットで顕著なパフォーマンスを達成し、KITTI 3Dオブジェクト検出データセットの完全な教師付き結果を超えています。
論文 参考訳(メタデータ) (2022-04-25T12:23:07Z) - DTA: Physical Camouflage Attacks using Differentiable Transformation
Network [0.4215938932388722]
本研究では,物体検出モデルに対して,対象物体上の頑健な物理的対角パターンを生成するためのフレームワークを提案する。
我々の攻撃フレームワークを利用することで、敵はレガシーなフォトリアリスティックの利点と、ホワイトボックスアクセスの利点の両方を得ることができる。
実験の結果,我々のキャモフラージュした3D車両は,最先端の物体検出モデルを回避することができた。
論文 参考訳(メタデータ) (2022-03-18T10:15:02Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
この研究の直感は、与えられたメッシュ間の幾何学的不整合を強力な自己認識機構で知覚することである。
本研究では,グローバルな幾何学的不整合に対する3次元構造的知覚能力を有する新しい幾何学コントラスト変換器を提案する。
本稿では, クロスデータセット3次元ポーズ伝達タスクのための半合成データセットとともに, 潜時等尺正則化モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-14T13:14:24Z) - Imperceptible Transfer Attack and Defense on 3D Point Cloud
Classification [12.587561231609083]
我々は2つの新しい視点と挑戦的な視点から3Dポイント・クラウド・アタックを調査した。
我々は、最も有害な歪みを発生させる逆変換モデルを開発し、抵抗する逆変換例を強制する。
我々は、より差別的なポイントクラウド表現を学習することで、より堅牢なブラックボックス3Dモデルをトレーニングし、そのようなITA攻撃に対して防御します。
論文 参考訳(メタデータ) (2021-11-22T05:07:36Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。