論文の概要: Complementary Domain Adaptation and Generalization for Unsupervised
Continual Domain Shift Learning
- arxiv url: http://arxiv.org/abs/2303.15833v2
- Date: Fri, 13 Oct 2023 12:49:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 17:54:21.474168
- Title: Complementary Domain Adaptation and Generalization for Unsupervised
Continual Domain Shift Learning
- Title(参考訳): 教師なし連続ドメインシフト学習のための補完ドメイン適応と一般化
- Authors: Wonguk Cho, Jinha Park, Taesup Kim
- Abstract要約: 教師なし連続的なドメインシフト学習は、現実世界のアプリケーションにおいて重要な課題である。
本稿では,シンプルで効果的な学習フレームワークであるComplementary Domain Adaptation and Generalization (CoDAG)を提案する。
我々のアプローチはモデルに依存しないため、既存のドメイン適応および一般化アルゴリズムと互換性がある。
- 参考スコア(独自算出の注目度): 4.921899151930171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual domain shift poses a significant challenge in real-world
applications, particularly in situations where labeled data is not available
for new domains. The challenge of acquiring knowledge in this problem setting
is referred to as unsupervised continual domain shift learning. Existing
methods for domain adaptation and generalization have limitations in addressing
this issue, as they focus either on adapting to a specific domain or
generalizing to unseen domains, but not both. In this paper, we propose
Complementary Domain Adaptation and Generalization (CoDAG), a simple yet
effective learning framework that combines domain adaptation and generalization
in a complementary manner to achieve three major goals of unsupervised
continual domain shift learning: adapting to a current domain, generalizing to
unseen domains, and preventing forgetting of previously seen domains. Our
approach is model-agnostic, meaning that it is compatible with any existing
domain adaptation and generalization algorithms. We evaluate CoDAG on several
benchmark datasets and demonstrate that our model outperforms state-of-the-art
models in all datasets and evaluation metrics, highlighting its effectiveness
and robustness in handling unsupervised continual domain shift learning.
- Abstract(参考訳): 連続的なドメインシフトは、特にラベル付きデータが新しいドメインで利用できない状況において、現実世界のアプリケーションにおいて大きな課題となる。
この問題における知識獲得の課題は、教師なし連続的ドメインシフト学習と呼ばれる。
既存のドメイン適応と一般化の方法は、特定のドメインへの適応か、見えないドメインへの一般化に重点を置いているが、両方ではないため、この問題に対処する上での制限がある。
本稿では,非教師なし連続的なドメインシフト学習の3つの主要な目標を達成するために,ドメイン適応と一般化を相補的に組み合わせたシンプルかつ効果的な学習フレームワークである補完的ドメイン適応・一般化(CoDAG)を提案する。
我々のアプローチはモデルに依存しないため、既存のドメイン適応および一般化アルゴリズムと互換性がある。
我々はCoDAGをいくつかのベンチマークデータセットで評価し、我々のモデルはすべてのデータセットや評価指標において最先端のモデルよりも優れており、教師なし連続的なドメインシフト学習を扱う上での有効性と堅牢性を強調している。
関連論文リスト
- Overcoming Data Inequality across Domains with Semi-Supervised Domain
Generalization [4.921899151930171]
本稿では,ドメイン認識型プロトタイプを用いて,ドメイン不変性を効果的に学習できる新しいアルゴリズムProUDを提案する。
3つの異なるベンチマークデータセットに対する実験により, ProUDの有効性が示された。
論文 参考訳(メタデータ) (2024-03-08T10:49:37Z) - Domain Generalization for Domain-Linked Classes [8.738092015092207]
実世界では、クラスはドメインリンクされ、すなわち特定のドメインでのみ表現される。
本稿では,ドメインリンクDG,FONDのためのFair and cONtrastive feature-space regularizationアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-01T16:39:50Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
ドメインの一般化は通常、モデル学習のために複数のソースドメインからのデータを必要とする。
本稿では,1つのソースドメインのみで最悪のシナリオ下でモデルを学習し,異なる未確認対象ドメインに直接一般化する,重要な単一ドメインの一般化問題について考察する。
本稿では,領域間で不変なセグメンテーションのセグメンテーション先情報を抽出し,統合する医用画像セグメンテーションにおいて,この問題に対処する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-29T08:46:27Z) - Localized Adversarial Domain Generalization [83.4195658745378]
対数領域の一般化は、領域の一般化に対する一般的なアプローチである。
空間コンパクト性維持(LADG)を用いた局所対向領域の一般化を提案する。
我々はWilds DGベンチマークで包括的な実験を行い、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2022-05-09T08:30:31Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
マルチモーダル分布を再正規化するために,スタイル駆動型ドメイン固有正規化(SDNorm)を導入する。
組込み空間における関係モデリングを行うために,プロトタイプ表現,クラスセントロイドを利用する。
4つの標準ドメイン一般化ベンチマークの実験により、COMENはドメインの監督なしに最先端のパフォーマンスを上回ることが判明した。
論文 参考訳(メタデータ) (2022-03-24T11:54:59Z) - Unsupervised Domain Generalization for Person Re-identification: A
Domain-specific Adaptive Framework [50.88463458896428]
ドメイン一般化(DG)は近年,人物再同定(ReID)において注目されている。
既存のメソッドは通常、ソースドメインにラベルを付ける必要があります。
本稿では、単純で効率的なドメイン固有適応化フレームワークを提案し、適応正規化モジュールで実現する。
論文 参考訳(メタデータ) (2021-11-30T02:35:51Z) - COLUMBUS: Automated Discovery of New Multi-Level Features for Domain
Generalization via Knowledge Corruption [12.555885317622131]
ここでは、ソースドメインの集合で訓練されたモデルが、データに触れることなく、目に見えないドメインでうまく一般化されることを期待する領域一般化問題に対処する。
コロンバス(Columbus)は、最も関連性の高い入力とマルチレベルのデータ表現を対象とする汚職によって、新機能の発見を強制する手法である。
論文 参考訳(メタデータ) (2021-09-09T14:52:05Z) - Structured Latent Embeddings for Recognizing Unseen Classes in Unseen
Domains [108.11746235308046]
本稿では,異なる領域からの画像を投影することで,ドメインに依存しない遅延埋め込みを学習する手法を提案する。
挑戦的なDomainNetとDomainNet-LSベンチマークの実験は、既存のメソッドよりもアプローチの方が優れていることを示している。
論文 参考訳(メタデータ) (2021-07-12T17:57:46Z) - Domain Adaptation with Incomplete Target Domains [61.68950959231601]
本稿では、この新たなドメイン適応問題に対処するために、不完全データインプットに基づく Adversarial Network (IDIAN) モデルを提案する。
提案モデルでは,対象領域における部分的な観測に基づいて,欠落した特徴値を満たすデータ計算モジュールを設計する。
我々は、クロスドメインベンチマークタスクと、不完全なターゲットドメインを用いた実世界適応タスクの両方で実験を行う。
論文 参考訳(メタデータ) (2020-12-03T00:07:40Z) - Generalized Zero-Shot Domain Adaptation via Coupled Conditional
Variational Autoencoders [23.18781318003242]
本研究では,新しい条件結合型変分自動エンコーダ(CCVAE)を提案する。
航空セキュリティにおける現実の応用をシミュレートするために、X線セキュリティチェックポイントデータセットを含む3つのドメイン適応データセットで実験が行われた。
論文 参考訳(メタデータ) (2020-08-03T21:48:50Z) - Improve Unsupervised Domain Adaptation with Mixup Training [18.329571222689562]
本稿では,ラベルの豊富な関連するソースドメインを用いて,注釈のないターゲットドメインの予測モデルを構築するという課題について検討する。
近年の研究では、ドメイン不変の特徴を学習する一般的な敵対的アプローチは、望ましいドメイン性能を達成するには不十分である。
対象データに対する一般化性能に直接対処するために、ミックスアップ定式化を用いて、ドメイン間のトレーニング制約を強制することを提案する。
論文 参考訳(メタデータ) (2020-01-03T01:21:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。