論文の概要: Improve Unsupervised Domain Adaptation with Mixup Training
- arxiv url: http://arxiv.org/abs/2001.00677v1
- Date: Fri, 3 Jan 2020 01:21:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-14 17:17:30.425142
- Title: Improve Unsupervised Domain Adaptation with Mixup Training
- Title(参考訳): 混合学習による教師なしドメイン適応の改善
- Authors: Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, Liu Ren
- Abstract要約: 本稿では,ラベルの豊富な関連するソースドメインを用いて,注釈のないターゲットドメインの予測モデルを構築するという課題について検討する。
近年の研究では、ドメイン不変の特徴を学習する一般的な敵対的アプローチは、望ましいドメイン性能を達成するには不十分である。
対象データに対する一般化性能に直接対処するために、ミックスアップ定式化を用いて、ドメイン間のトレーニング制約を強制することを提案する。
- 参考スコア(独自算出の注目度): 18.329571222689562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation studies the problem of utilizing a relevant
source domain with abundant labels to build predictive modeling for an
unannotated target domain. Recent work observe that the popular adversarial
approach of learning domain-invariant features is insufficient to achieve
desirable target domain performance and thus introduce additional training
constraints, e.g. cluster assumption. However, these approaches impose the
constraints on source and target domains individually, ignoring the important
interplay between them. In this work, we propose to enforce training
constraints across domains using mixup formulation to directly address the
generalization performance for target data. In order to tackle potentially huge
domain discrepancy, we further propose a feature-level consistency regularizer
to facilitate the inter-domain constraint. When adding intra-domain mixup and
domain adversarial learning, our general framework significantly improves
state-of-the-art performance on several important tasks from both image
classification and human activity recognition.
- Abstract(参考訳): 教師なしドメイン適応は、豊富なラベルを持つ関連するソースドメインを使用して、注釈のないターゲットドメインの予測モデリングを構築するという問題を研究する。
最近の研究は、ドメイン不変の特徴を学習する一般的な敵対的アプローチは、望ましいドメイン性能を達成するには不十分であり、クラスタの仮定のような追加のトレーニング制約を導入することに留意している。
しかし、これらのアプローチはソースドメインとターゲットドメインに個別に制約を課し、それら間の重要な相互作用を無視している。
本研究では,mixup法を用いて,対象データの一般化性能に直接対処するために,ドメイン間のトレーニング制約を強制する手法を提案する。
潜在的に巨大なドメインの不一致に対処するため、我々はさらに、ドメイン間制約を容易にする機能レベルの一貫性の調整子を提案する。
ドメイン内ミックスアップとドメイン対向学習を追加する場合、画像分類と人的活動認識の両方から、いくつかの重要なタスクにおける最先端の性能を大幅に向上させる。
関連論文リスト
- Complementary Domain Adaptation and Generalization for Unsupervised
Continual Domain Shift Learning [4.921899151930171]
教師なし連続的なドメインシフト学習は、現実世界のアプリケーションにおいて重要な課題である。
本稿では,シンプルで効果的な学習フレームワークであるComplementary Domain Adaptation and Generalization (CoDAG)を提案する。
我々のアプローチはモデルに依存しないため、既存のドメイン適応および一般化アルゴリズムと互換性がある。
論文 参考訳(メタデータ) (2023-03-28T09:05:15Z) - AIR-DA: Adversarial Image Reconstruction for Unsupervised Domain
Adaptive Object Detection [28.22783703278792]
特徴抽出器の対角訓練を容易にするための正則化器としての適応画像再構成(AIR)
ドメインシフトに挑戦するいくつかのデータセットにまたがって評価を行った結果,提案手法が従来の手法よりも優れていたことが判明した。
論文 参考訳(メタデータ) (2023-03-27T16:51:51Z) - Domain Generalization via Selective Consistency Regularization for Time
Series Classification [16.338176636365752]
ドメイン一般化手法は、限られた数のソースドメインからのデータで、ドメインシフトに頑健なモデルを学習することを目的としている。
本稿では,ソースドメイン間の予測一貫性を選択的に適用する表現学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-16T01:57:35Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Domain Adaptation for Semantic Segmentation via Patch-Wise Contrastive
Learning [62.7588467386166]
ドメイン間で構造的に類似するラベルパッチの機能を調整することで、ドメインギャップを埋めるためにコントラスト学習を利用する。
私たちのアプローチは、常に2つの困難なドメイン適応セグメンテーションタスクにおいて、最先端の非監視および半監督メソッドを上回ります。
論文 参考訳(メタデータ) (2021-04-22T13:39:12Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
教師なしドメイン適応は、ソースドメインからターゲットドメインに知識を転送する有望な道である。
本稿では,距離メトリックガイド機能アライメント(MetFA)を提案する。
我々のモデルは、クラス分布アライメントを統合して、ソースドメインからターゲットドメインにセマンティック知識を転送します。
論文 参考訳(メタデータ) (2020-08-19T13:36:57Z) - Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain
Adaptation [7.538482310185133]
本研究では,コントラスト特徴を学習するContradistinguisherと呼ばれるモデルを提案する。
Office-31とVisDA-2017における最先端のデータセットを、シングルソースとマルチソースの両方で実現しています。
論文 参考訳(メタデータ) (2020-05-25T19:54:38Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。