GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for
PINNs
- URL: http://arxiv.org/abs/2303.15849v2
- Date: Fri, 7 Apr 2023 08:49:20 GMT
- Title: GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for
PINNs
- Authors: Yuling Jiao, Di Li, Xiliang Lu, Jerry Zhijian Yang, Cheng Yuan
- Abstract summary: PINNs can efficiently handle high-dimensional problems, but the accuracy is relatively low, especially for highly irregular problems.
Inspired by the idea of adaptive finite element methods and incremental learning, we propose GAS, a Gaussian mixture distribution-based adaptive sampling method for PINNs.
Several numerical simulations on 2D and 10D problems show that GAS is a promising method that achieves state-of-the-art accuracy among deep solvers, while being comparable with traditional numerical solvers.
- Score: 6.011027400738812
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the recent study of deep learning in scientific computation, the
Physics-Informed Neural Networks (PINNs) method has drawn widespread attention
for solving Partial Differential Equations (PDEs). Compared to traditional
methods, PINNs can efficiently handle high-dimensional problems, but the
accuracy is relatively low, especially for highly irregular problems. Inspired
by the idea of adaptive finite element methods and incremental learning, we
propose GAS, a Gaussian mixture distribution-based adaptive sampling method for
PINNs. During the training procedure, GAS uses the current residual information
to generate a Gaussian mixture distribution for the sampling of additional
points, which are then trained together with historical data to speed up the
convergence of the loss and achieve higher accuracy. Several numerical
simulations on 2D and 10D problems show that GAS is a promising method that
achieves state-of-the-art accuracy among deep solvers, while being comparable
with traditional numerical solvers.
Related papers
- Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner [6.408773096179187]
We propose a scalable algorithm for sampling random realizations of the prior and posterior of GP models.
The proposed algorithm leverages inducing points approximation with sparse grids, as well as additive Schwarz preconditioners.
arXiv Detail & Related papers (2024-08-01T00:19:36Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting [4.675221539472143]
We propose a scalable inference algorithm for fitting sparse Gaussian process regression models with contaminated normal noise on large datasets.
We show that our approach yields shorter prediction intervals for similar coverage and accuracy when compared to an artificial dense neural network baseline.
arXiv Detail & Related papers (2024-02-27T15:08:57Z) - DynGMA: a robust approach for learning stochastic differential equations from data [13.858051019755283]
We introduce novel approximations to the transition density of the parameterized SDE.
Our method exhibits superior accuracy compared to baseline methods in learning the fully unknown drift diffusion functions.
It is capable of handling data with low time resolution and variable, even uncontrollable, time step sizes.
arXiv Detail & Related papers (2024-02-22T12:09:52Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks (PINNs) are a class of deep neural networks that are trained to compute systems governed by partial differential equations (PDEs)
We show that an importance sampling approach will improve the convergence behavior of PINNs training.
arXiv Detail & Related papers (2021-04-26T02:45:10Z) - A hybrid MGA-MSGD ANN training approach for approximate solution of
linear elliptic PDEs [0.0]
We introduce a hybrid "Modified Genetic-Multilevel Gradient Descent" (MGA-MSGD) training algorithm.
It considerably improves accuracy and efficiency of solving 3D mechanical problems described, in strong-form, by PDEs via ANNs.
arXiv Detail & Related papers (2020-12-18T10:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.