PosterLlama: Bridging Design Ability of Langauge Model to Contents-Aware Layout Generation
- URL: http://arxiv.org/abs/2404.00995v3
- Date: Sun, 28 Jul 2024 08:27:46 GMT
- Title: PosterLlama: Bridging Design Ability of Langauge Model to Contents-Aware Layout Generation
- Authors: Jaejung Seol, Seojun Kim, Jaejun Yoo,
- Abstract summary: PosterLlama is a network designed for generating visually and textually coherent layouts.
Our evaluations demonstrate that PosterLlama outperforms existing methods in producing authentic and content-aware layouts.
It supports an unparalleled range of conditions, including but not limited to unconditional layout generation, element conditional layout generation, layout completion, among others, serving as a highly versatile user manipulation tool.
- Score: 6.855409699832414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual layout plays a critical role in graphic design fields such as advertising, posters, and web UI design. The recent trend towards content-aware layout generation through generative models has shown promise, yet it often overlooks the semantic intricacies of layout design by treating it as a simple numerical optimization. To bridge this gap, we introduce PosterLlama, a network designed for generating visually and textually coherent layouts by reformatting layout elements into HTML code and leveraging the rich design knowledge embedded within language models. Furthermore, we enhance the robustness of our model with a unique depth-based poster augmentation strategy. This ensures our generated layouts remain semantically rich but also visually appealing, even with limited data. Our extensive evaluations across several benchmarks demonstrate that PosterLlama outperforms existing methods in producing authentic and content-aware layouts. It supports an unparalleled range of conditions, including but not limited to unconditional layout generation, element conditional layout generation, layout completion, among others, serving as a highly versatile user manipulation tool.
Related papers
- GLDesigner: Leveraging Multi-Modal LLMs as Designer for Enhanced Aesthetic Text Glyph Layouts [53.568057283934714]
We propose a VLM-based framework that generates content-aware text logo layouts.
We introduce two model techniques to reduce the computation for processing multiple glyph images simultaneously.
To support instruction-tuning of out model, we construct two extensive text logo datasets, which are 5x more larger than the existing public dataset.
arXiv Detail & Related papers (2024-11-18T10:04:10Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
Our research introduces a unified framework for automated graphic layout generation.
Our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts.
We conduct extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks.
arXiv Detail & Related papers (2024-06-05T03:05:52Z) - Towards Aligned Layout Generation via Diffusion Model with Aesthetic Constraints [53.66698106829144]
We propose a unified model to handle a broad range of layout generation tasks.
The model is based on continuous diffusion models.
Experiment results show that LACE produces high-quality layouts.
arXiv Detail & Related papers (2024-02-07T11:12:41Z) - LayoutGPT: Compositional Visual Planning and Generation with Large
Language Models [98.81962282674151]
Large Language Models (LLMs) can serve as visual planners by generating layouts from text conditions.
We propose LayoutGPT, a method to compose in-context visual demonstrations in style sheet language.
arXiv Detail & Related papers (2023-05-24T17:56:16Z) - PosterLayout: A New Benchmark and Approach for Content-aware
Visual-Textual Presentation Layout [62.12447593298437]
Content-aware visual-textual presentation layout aims at arranging spatial space on the given canvas for pre-defined elements.
We propose design sequence formation (DSF) that reorganizes elements in layouts to imitate the design processes of human designers.
A novel CNN-LSTM-based conditional generative adversarial network (GAN) is presented to generate proper layouts.
arXiv Detail & Related papers (2023-03-28T12:48:36Z) - LayoutDETR: Detection Transformer Is a Good Multimodal Layout Designer [80.61492265221817]
Graphic layout designs play an essential role in visual communication.
Yet handcrafting layout designs is skill-demanding, time-consuming, and non-scalable to batch production.
Generative models emerge to make design automation scalable but it remains non-trivial to produce designs that comply with designers' desires.
arXiv Detail & Related papers (2022-12-19T21:57:35Z) - Constrained Graphic Layout Generation via Latent Optimization [17.05026043385661]
We generate graphic layouts that can flexibly incorporate design semantics, either specified implicitly or explicitly by a user.
Our approach builds on a generative layout model based on a Transformer architecture, and formulates the layout generation as a constrained optimization problem.
We show in the experiments that our approach is capable of generating realistic layouts in both constrained and unconstrained generation tasks with a single model.
arXiv Detail & Related papers (2021-08-02T13:04:11Z) - Attribute-conditioned Layout GAN for Automatic Graphic Design [38.30728086400307]
We introduce Attribute-conditioned Layout GAN to incorporate the attributes of design elements for graphic layout generation.
Due to the complexity of graphic designs, we propose an element dropout method to make the discriminator look at partial lists of elements and learn their local patterns.
We demonstrate that the proposed method can synthesize graphic layouts conditioned on different element attributes.
arXiv Detail & Related papers (2020-09-11T08:34:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.