fRegGAN with K-space Loss Regularization for Medical Image Translation
- URL: http://arxiv.org/abs/2303.15938v2
- Date: Tue, 17 Oct 2023 11:50:03 GMT
- Title: fRegGAN with K-space Loss Regularization for Medical Image Translation
- Authors: Ivo M. Baltruschat, Felix Kreis, Alexander Hoelscher, Melanie Dohmen,
Matthias Lenga
- Abstract summary: Generative adversarial networks (GANs) have shown remarkable success in generating realistic images.
GANs tend to suffer from a frequency bias towards low frequencies, which can lead to the removal of important structures in the generated images.
We propose a novel frequency-aware image-to-image translation framework based on the supervised RegGAN approach, which we call fRegGAN.
- Score: 42.253647362909476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative adversarial networks (GANs) have shown remarkable success in
generating realistic images and are increasingly used in medical imaging for
image-to-image translation tasks. However, GANs tend to suffer from a frequency
bias towards low frequencies, which can lead to the removal of important
structures in the generated images. To address this issue, we propose a novel
frequency-aware image-to-image translation framework based on the supervised
RegGAN approach, which we call fRegGAN. The framework employs a K-space loss to
regularize the frequency content of the generated images and incorporates
well-known properties of MRI K-space geometry to guide the network training
process. By combine our method with the RegGAN approach, we can mitigate the
effect of training with misaligned data and frequency bias at the same time. We
evaluate our method on the public BraTS dataset and outperform the baseline
methods in terms of both quantitative and qualitative metrics when synthesizing
T2-weighted from T1-weighted MR images. Detailed ablation studies are provided
to understand the effect of each modification on the final performance. The
proposed method is a step towards improving the performance of image-to-image
translation and synthesis in the medical domain and shows promise for other
applications in the field of image processing and generation.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Unpaired Optical Coherence Tomography Angiography Image Super-Resolution
via Frequency-Aware Inverse-Consistency GAN [6.717440708401628]
We propose a Generative Adversarial Network (GAN)-based unpaired super-resolution method for OCTA images.
To facilitate a precise spectrum of the reconstructed image, we also propose a frequency-aware adversarial loss for the discriminator.
Experiments show that our method outperforms other state-of-the-art unpaired methods both quantitatively and visually.
arXiv Detail & Related papers (2023-09-29T14:19:51Z) - Spectral Normalization and Dual Contrastive Regularization for
Image-to-Image Translation [9.029227024451506]
We propose a new unpaired I2I translation framework based on dual contrastive regularization and spectral normalization.
We conduct comprehensive experiments to evaluate the effectiveness of SN-DCR, and the results prove that our method achieves SOTA in multiple tasks.
arXiv Detail & Related papers (2023-04-22T05:22:24Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
Cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists.
We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups.
arXiv Detail & Related papers (2021-03-05T16:22:31Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
Cycle-consistent Generative Adversarial Networks have been used to harmonize image sets between a source and target domain.
These methods are prone to instability, contrast inversion, intractable manipulation of pathology, and steganographic mappings which limit their reliable adoption in real-world medical imaging.
We propose a segmentation-renormalized image translation framework to reduce inter-scanner harmonization while preserving anatomical layout.
arXiv Detail & Related papers (2021-02-11T23:53:51Z) - Flow-based Deformation Guidance for Unpaired Multi-Contrast MRI
Image-to-Image Translation [7.8333615755210175]
In this paper, we introduce a novel approach to unpaired image-to-image translation based on the invertible architecture.
We utilize the temporal information between consecutive slices to provide more constraints to the optimization for transforming one domain to another in unpaired medical images.
arXiv Detail & Related papers (2020-12-03T09:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.