論文の概要: A source separation approach to temporal graph modelling for computer
networks
- arxiv url: http://arxiv.org/abs/2303.15950v1
- Date: Tue, 28 Mar 2023 13:07:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 15:07:05.780349
- Title: A source separation approach to temporal graph modelling for computer
networks
- Title(参考訳): コンピュータネットワークのための時間グラフモデリングのための音源分離手法
- Authors: Corentin Larroche
- Abstract要約: 本稿では,コンピュータネットワーク活動のソースインスパイアされた記述を提案する。
各段階において、観測されたグラフは、様々な活動源を表す部分グラフの混合である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting malicious activity within an enterprise computer network can be
framed as a temporal link prediction task: given a sequence of graphs
representing communications between hosts over time, the goal is to predict
which edges should--or should not--occur in the future. However, standard
temporal link prediction algorithms are ill-suited for computer network
monitoring as they do not take account of the peculiar short-term dynamics of
computer network activity, which exhibits sharp seasonal variations. In order
to build a better model, we propose a source separation-inspired description of
computer network activity: at each time step, the observed graph is a mixture
of subgraphs representing various sources of activity, and short-term dynamics
result from changes in the mixing coefficients. Both qualitative and
quantitative experiments demonstrate the validity of our approach.
- Abstract(参考訳): エンタープライズコンピュータネットワーク内の悪意のあるアクティビティを検出することは、時間的リンク予測タスクとしてフレーム化することができる。 時間とともにホスト間の通信を表す一連のグラフが与えられると、どのエッジを予測すべきか、あるいは、将来は不正確なのか、といったことが目標である。
しかし、標準的な時間的リンク予測アルゴリズムは、鋭い季節変動を示すコンピュータネットワークアクティビティの特異な短期的ダイナミクスを考慮していないため、コンピュータネットワーク監視には不向きである。
より優れたモデルを構築するために,コンピュータネットワーク活動のソース分離に触発された記述法を提案する。各ステップにおいて観測されたグラフは,様々な活動源を表すサブグラフと,混合係数の変化による短期的ダイナミクスの混合である。
定性的かつ定量的な実験は、我々のアプローチの有効性を示す。
関連論文リスト
- Contrastive Representation Learning for Dynamic Link Prediction in Temporal Networks [1.9389881806157312]
本稿では,時間ネットワークの表現を学習するための自己教師付き手法を提案する。
本稿では、時間的ネットワークの時間的参照経路を介して情報の流れをモデル化するための、繰り返しメッセージパッシングニューラルネットワークアーキテクチャを提案する。
提案手法は、Enron、COLAB、Facebookのデータセットでテストされる。
論文 参考訳(メタデータ) (2024-08-22T22:50:46Z) - Temporal Link Prediction Using Graph Embedding Dynamics [0.0]
動的ネットワークにおける時間的リンク予測は、複雑な科学的および現実世界の問題を解く可能性から特に関心がある。
時間的リンク予測への伝統的なアプローチは、ネットワークのダイナミックスの集約を統一的な出力として見つけることに集中してきた。
本稿では,ノードをニュートンオブジェクトとして定義し,ネットワークダイナミクスの予測に速度の概念を取り入れることで,時間的リンク予測の新しい視点を提案する。
論文 参考訳(メタデータ) (2024-01-15T07:35:29Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
時間的ネットワーク上での機械学習の方法は、一般的に2つの制限のうちの少なくとも1つを示す。
ネットワークのライングラフは,各インタラクションのノードを含むもので,インタラクション間の時間差に基づいて,このグラフのエッジを重み付けする。
実世界のネットワークにおける実験結果から,エッジ分類と時間リンク予測の両方において,本手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2022-09-30T18:24:13Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
グラフニューラルネットワークとマーク付き時間点プロセス(MTPP)を組み合わせた新しいモデルを提案する。
実験では,モデルの精度と訓練効率の両面から,モデルの優れた性能を実証した。
論文 参考訳(メタデータ) (2022-05-21T15:30:25Z) - PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting [4.14360329494344]
我々は、プログレッシブグラフ畳み込みネットワーク(PGCN)と呼ばれる新しいトラフィック予測フレームワークを提案する。
PGCNは、トレーニングおよびテストフェーズ中にオンライン入力データに段階的に適応することで、グラフのセットを構築する。
提案したモデルでは,すべてのデータセットの一貫性を保ちながら,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-02-18T02:15:44Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - Mutually exciting point process graphs for modelling dynamic networks [0.0]
相互励起点過程グラフ(MEG)と呼ばれる動的ネットワークのための新しいモデルのクラスが提案される。
MEGは、Dyadicマーク付きポイントプロセスのためのスケーラブルなネットワークワイド統計モデルであり、異常検出に使用できる。
このモデルはシミュレーショングラフと実世界のコンピュータネットワークデータセット上でテストされ、優れた性能を示す。
論文 参考訳(メタデータ) (2021-02-11T10:14:55Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z) - Link Prediction for Temporally Consistent Networks [6.981204218036187]
リンク予測は、動的ネットワークにおける次の関係を推定する。
動的に進化するネットワークを表現するための隣接行列の使用は、異種、スパース、またはネットワーク形成から解析的に学習する能力を制限する。
時間的パラメータ化ネットワークモデルとして不均一な時間進化活動を表現する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-06T07:28:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。